
Security Audit – Neon EVM

Neodyme AG

November 5, 2021

Security Audit – Neon EVM

Contents

Introduction 3
Project Overview . 3
Scope . 4
Methodology . 5

Findings 6
Instruction Sysvar does not get checked (Critical) . 7
Contracts can be deleted and modified (Critical) . 8
External Calls execute Solana instruction instantly (Critical) 9
External calls always sign on behalf of the caller (Critical) 10
Denial of Service (High) . 11

Infinite Execution Attack . 11
Cancel-and-Refresh Attack . 12

External Calls escalate operators signature (High) . 13
CreateAccount allows to create di�erent accounts with same Ethereum address (High) . . . 14
Transaction’s target contract not verified (High) . 15
ERC20 Wrapper allows privilege escalation (High) . 16
Block of ERC20 Allowances and Ethereum addresses (Medium) 18
Nonce increment does not get written into account (Low) 19
Solana Chain Inconsistencies (Low) . 20
Block of Contract Creation (Low) . 21
Temporary Transaction Store can be overwritten (Low) . 23
External calls allow reentrancy into the Neon program (Low) 24
Unused entrypoints available (Low) . 25

2

Security Audit – Neon EVM

Introduction

Neon engaged Neodyme to do a detailed security analysis of their on-chain programs. A thorough
audit was done from September 13th to September 23rd.

The target of the audit was the end-to-end security from the moment a user signs an Ethereum trans-
action to execution in Neon on Solana. The audit revealed a a number of significant vulnerabilities as
well as some medium and low-priority findings. All findings were subsequently fixed by the Neon team.
The fix for a denial-of-service issue requires Neon’s first MVP to rely on a trusted set of operators. These
operators will be the only one allowed to forward Ethereum transactions into Neon, and will have full
control over what transactions are executed and in what order.

The following report describes all findings in detail.

Project Overview

Neon EVM is an Ethereum virtual machine on Solana that enables dApp developers to use
Ethereum tooling to scale and get access to liquidity on Solana.

Executing Ethereum contracts on Solana is no easy task. Neon solves it by implementing a full Ethereum
Virtual Machine (EVM) inside a Solana smart contract, alongside a range of storage and state handlers
and helper functions. This raises many technical challenges due to the di�erent chain-designs. As
an example: on Ethereum, transactions get more expensive if they are more complex. On Solana,
every transaction has a fixed complexity limit. This means a single Ethereum transaction might not
fit into a single Solana transaction. Neon can therefore execute transactions iteratively over multi-
ple Solana transactions. To make this transparent for users, a Neon Web3 Proxy exposes the usual
Ethereum interface to users. It then does the iterative execution automatically. Neon operators run
these proxies.

To take advantage of the broader Solana ecosystem, Neon implements an ERC20-Wrapper, which
exposes an ERC-20-like interface for the Solana native SPL tokens. There are also various pre-compiled
contracts, which allow interfacing with Solana from inside the EVM directly.

3

https://neon-labs.org/
https://neodyme.io

Security Audit – Neon EVM

Scope

This audit looked at all on-chain and some o�-chain parts of Neon. This enables Neodyme to evaluate
the end-to-end security, from the moment the user signs an Ethereum transaction to execution in Neon
on Solana. All audit targets are tagged with audit−20210913 by the Neon team. Specifically:

• Neon-EVM / evm_loader

– The main Neon contract, which defines the interface between Solana and the EVM. In-
cludes, for example, signature verification and state and storage handling. Also includes all
ERC20Wrapper code.

– github.com/neonlabsorg/neon-evm, (02c5944e855bf221f3f36e�95fc56f60cc0�29)

• Rust EVM Implementation

– The actual EVM implementation. Implements all EVM opcodes.
– github.com/neonlabsorg/evm, (6076b6029b39d26e16180e910b49be3031950c5b)

• Neon Web3 Proxy:

– Proxy run by operators, which convert Ethereum transactions into Neon transacations and
execute them on Solana.

– https://github.com/neonlabsorg/proxy-model.py/. . . /proxy/plugin/solana_rest_api.py
– https://github.com/neonlabsorg/proxy-model.py/. . . /plugin/solana_rest_api_tools.py

4

https://github.com/neonlabsorg/neon-evm/tree/audit-20210913
https://github.com/neonlabsorg/evm/tree/audit-20210913
https://github.com/neonlabsorg/proxy-model.py/blob/audit-20210913/proxy/plugin/solana_rest_api.py
https://github.com/neonlabsorg/proxy-model.py/blob/audit-20210913/proxy/plugin/solana_rest_api_tools.py

Security Audit – Neon EVM

Methodology

Neodyme’s audit team performed a comprehensive examination of the Neon contract. The team, which
consists of security engineers with extensive experience in Solana smart contract security, reviewed
and tested the code of the on-chain contracts, paying particular attention to the following:

• Ruling out common classes of Solana contract vulnerabilities, such as:

– Missing ownership checks,
– Missing signer checks,
– Signed invocation of unverified programs,
– Solana account confusions,
– Re-initiation with cross-instance confusion,
– Missing freeze authority checks,
– Insu�icient SPL token account verification,
– Missing rent exemption assertion,
– Casting truncation,
– Arithmetic over- or underflows,
– Numerical precision errors.

• Checking for unsafe design, which might lead to common vulnerabilities being introduced in the
future,

• Checking for any other, as-of-yet unknown classes of vulnerabilities arising from the structure of
the Solana blockchain,

• Ensuring that the contract logic correctly implements the project specifications,
• Examining the code in detail for contract-specific low-level vulnerabilities,
• Ruling out denial-of-service attacks,
• Ruling out economic attacks,
• Checking for instructions that allow front-running or sandwiching attacks,
• Checking for rug-pull mechanisms or hidden backdoors.

5

Security Audit – Neon EVM

Findings

All findings are classified in one of four severity levels:

• Critical: Bugs which will likely cause loss of funds. This means that an attacker can, with little or
no preparation, trigger them, or they are expected to happen accidentally. E�ects are di�icult to
undo a�er they are detected.

• High: Bugs, which can be used to set up loss of funds in a more limited capacity, or to render the
contract unusable.

• Medium: Bugs that do not cause direct loss of funds but lead to other exploitable mechanisms.
• Low: Bugs that do not have a significant immediate impact and could be fixed easily a�er

detection.

Name Severity

Instruction Sysvar does not get checked Critical

Contracts can be deleted and modified Critical

External Calls execute Solana instruction instantly Critical

External calls always sign on behalf of the caller Critical

Denial of Service High

External Calls escalate operators signature High

CreateAccount allows to create di�erent accounts with same Ethereum address High

Transaction’s target contract not verified High

ERC20 Wrapper allows privilege escalation High

Block of ERC20 Allowances and Ethereum addresses Medium

Nonce increment does not get written into account Low

Solana Chain Inconsistencies Low

Temporary Transaction Store can be overwritten Low

Block of Contract Creation Low

External calls allow reentrancy into the Neon program Low

Unused Entrypoints Available Low

6

Security Audit – Neon EVM

Instruction Sysvar does not get checked (Critical)

Severity Impact A�ected Component

Critical Signature verification can be circumvented Call Entrypoints

The instructions used to start processing an Ethereum transaction have a critical vulnerability caused
by a missing account check. By supplying a maliciously cra�ed account, an attacker can bypass the
signer check and execute any transaction in the name of any user. This impersonation will lead to loss
of funds.

The bug is caused by a missing verification that the passed sysvar_info account matches the expected
Sysvar :: Instructions sysvar. The sysvar is used in fn check_secp256k1_instruction() to verify that
the Solana transaction contains a valid secp256k1-instruction. This secp256k1-instruction in turn
verifies that the Ethereum caller signed the Ethereum transaction. If the signature is invalid, the whole
transaction is terminated. An attacker can thus create an account that looks like the correct sysvar
account, except that the verification has passed.

All Call instructions, except for ExecuteTrxFromAccountDataIterativeOrContinue are a�ected, because
there the signature check is not done with a secp256k1 instruction, but via the sol_secp256k1_recover
syscall.

Solution The Neon team added the sysvar account check in check_secp256k1_instruction. Neodyme
verified the fix.

• https://github.com/neonlabsorg/neon-evm/issues/259
• https://github.com/neonlabsorg/neon-evm/commit/281cdd7a2590bdeef4401e36079a16aaa

8f41d4f

7

https://github.com/neonlabsorg/neon-evm/issues/259
https://github.com/neonlabsorg/neon-evm/commit/281cdd7a2590bdeef4401e36079a16aaa8f41d4f
https://github.com/neonlabsorg/neon-evm/commit/281cdd7a2590bdeef4401e36079a16aaa8f41d4f

Security Audit – Neon EVM

Contracts can be deleted and modified (Critical)

Severity Impact A�ected Component

Critical Contract code can be modified by anyone CreateAccount

The entrypoint used to create new Neon/Ethereum accounts has a critical vulnerability caused by a
missing account check, allowing anyone to modify any deployed contract.

CreateAccount creates a new Neon/Ethereum account as a collection of multiple Solana accounts.
When creating an account for a contract, one provides a program_code Solana account, which is used
to store the contract’s code.

Neon does not check if the program_code account is already in use. This allows an attacker to re-
initialize an already existing program_code account of another Ethereum contract. These changes then
get written back into the account through contract_data .pack(&mut program_code.data.borrow_mut
())?;.

This e�ectively deletes the target Ethereum contract from the chain. Further, it is now possible to place
new contract code in the re-initialized account.

Solution Neon now checks that the code account is zero-initialized. Neodyme verified this fix.

• https://github.com/neonlabsorg/neon-evm/issues/258
• https://github.com/neonlabsorg/neon-evm/pull/293

8

https://github.com/neonlabsorg/neon-evm/issues/258
https://github.com/neonlabsorg/neon-evm/pull/293

Security Audit – Neon EVM

External Calls execute Solana instruction instantly (Critical)

Severity Impact A�ected Component

Critical Execution cannot be rollbacked external_call

Neon has a built-in SYSTEM_ACCOUNT_SOLANA contract, that allows any EVM contract to call a native
Solana contract. The actual call is implemented in account_storage.rs in the external_call function.

A critical issue occurs when combining three facts:

• A single Ethereum transaction can be iteratively executed in multiple Solana instructions.
• external_call executes instructions immediately via Solana cross-program-invocation (CPI).
• CPIs cannot be rolled-back once the transaction containing them has succeeded.

Take, for example, an Ethereum transaction that is split into two Solana transactions. The first succeeds
and does an external call to a native contract. This contract is now executed immediately. In the second,
the EVM reverts. But the external-call is already persisted on the Solana chain and can not be reverted.

A malicious operator can intentionally split the execution of an Ethereum transaction so that some
native call succeeds while the main Ethereum transaction is reverted.

Solution The Neon team won’t include this functionality in the initial release. Neodyme verified this
fix.

• https://github.com/neonlabsorg/neon-evm/issues/269
• https://github.com/neonlabsorg/neon-evm/pull/271

9

https://github.com/neonlabsorg/neon-evm/issues/269
https://github.com/neonlabsorg/neon-evm/pull/271

Security Audit – Neon EVM

External calls always sign on behalf of the caller (Critical)

Severity Impact A�ected Component

Critical Contract can steal all of
users/parent contract’s
Eth/ERC20 tokens

external_call

Neon has a built-in SYSTEM_ACCOUNT_SOLANA contract, that allows any EVM contract to call a native
Solana contract. The actual call is implemented in account_storage.rs in the external_call function.
The function calls invoke_signed on the passed instruction and signs with seeds of both the instruction
caller and the called contract:

1 invoke_signed(
2 instruction,
3 account_infos,
4 &[&sender_seeds[..], &contract_seeds[..]]
5)

The used seeds are the same ones as used for the authority of the SPL token wallets, which contain the
callers/contract’s ERC20 and Ethereum balances. It is thus possible for an Ethereum contract to do a
native Solana SPL token transfer, signed with the caller’s seeds. This allows the contract to withdraw
an arbitrary amount from any of the user’s wallets.

This breaks a security premise of Ethereum, as a transaction usually has a specified value of Wei, that
get transferred from the caller to the recipient of the transaction. It must not be possible for a contract
to receive more than the user specified.

In addition, the contract seeds are always taken from the first, user-called contract. They are not
updated when a call is made inside Ethereum. This means that any child contract can use the same
authority as the parent contract.

Solution The Neon team won’t include this functionality in the initial release. Neodyme verified this
fix.

• https://github.com/neonlabsorg/neon-evm/issues/269
• https://github.com/neonlabsorg/neon-evm/pull/271

10

https://github.com/neonlabsorg/neon-evm/issues/269
https://github.com/neonlabsorg/neon-evm/pull/271

Security Audit – Neon EVM

Denial of Service (High)

Severity Impact A�ected Component

High Denial of Service Iterative Execution

The Neon contract in its current version is vulnerable to denial-of-service attacks, where arbitrary
Ethereum accounts can be blocked from being acted upon. This can be used to block certain users or
contracts.

On Ethereum, there is a mempool for transactions. This allows miners to only execute profitable
instructions, and makes a denial-of-service attack prohibitively expensive. An attacker who wants
to prevent a specific contract from being executed would have to “buy” every single execution slot.
Using smart execution ordering, arbitrageurs can sandwich swap instructions and earn the maximum
slippage, but not much more.

Neon does not have such a pool, and the current implementation is first-come-first-serve.

Infinite Execution Attack

Let us assume an attacker wants to block a contract X from executing. Such a contract could, for
example, be a liquidity pool, where freezing of price could potentially have a significant impact.

The attacker could:

1. Write & deploy his own contract Y to Neon, which just enters an infinite loop.
2. He creates & signs a transaction T contract Y. As Neon has no global gas-price, he just chooses 1

Wei (maybe even 0). Since gas is so cheap, he can use a gas_limit of u64 :: max.
3. He uploads the instruction to Neon, and calls ExecuteTrxFromAccountDataIterative to begin

executing it iteratively, choosing himself as operator. As he wants to block contract X with this
transaction, he provides its account in trx_accounts, which means it will get blocked, and no
other transaction can use it until this one is complete or canceled.

4. He then calls Continue once per slot, with step_count=1.
5. If no other operator steps in, he can continue to do so indefinitely. The earliest another operator

can cancel is a�er the OPERATOR_PRIORITY_SLOTS are over, or about 8 seconds.

Conclusion Operators need to look for this kind of blocked transactions and not only try to progress
them (as the gas limit is too high), but actively cancel them when it is lucrative, even if some other
operator is currently working on them.

11

Security Audit – Neon EVM

That in itself is not a significant issue, just something smart operators will do anyway. To prevent the
attacker from getting a foothold again, the operators can even place the cancel and begin_new_tx
instructions in the same Solana transaction. But that is something an attacker can do as well, in a
cancel-and-refresh attack.

Cancel-and-Refresh Attack

Shortly before the priority slots of the attacker run out, he cancels his own Neon transaction, and in
the same Solana transaction begins it again.

This process can currently be continued indefinitely. The priority slots will never run out, as the attacker
constantly renews them. The attacker could even cycle through operator identities to hide this a bit.
This can block both, contract execution and individual users.

In the context of DeFi swaps this can be leveraged to sandwich transactions with large slippage by
blocking the swap contract until a transaction gets uploaded in preparation of execution. Since the
attacker blocks the pool, he can sandwich this victim transaction with near certainty.

Solution The first release of Neon will only allow permissioned operators to make transactions. This
means that a user will have trust all operators, as any single of of them could still execute the attack
above, at least until they are manually removed from the operator set. It is also possible for operators
to selectively drop transactions they receive, or sandwhich them as they choose. Neodyme has verified
this partial fix.

• https://github.com/neonlabsorg/neon-evm/pull/308

12

https://github.com/neonlabsorg/neon-evm/pull/308

Security Audit – Neon EVM

External Calls escalate operators signature (High)

Severity Impact A�ected Component

High Loss of Operator Funds external_call

Neon has a built-in SYSTEM_ACCOUNT_SOLANA contract, that allows any EVM contract to call a native
Solana contract. The actual call is implemented in account_storage.rs in the external_call function.
The function calls invoke_signed on the passed instruction:

1 invoke_signed(
2 instruction,
3 account_infos,
4 &[&sender_seeds[..], &contract_seeds[..]]
5)

In such a cross-program invocation, all signers of the parent instruction can be available to the called
contract. In the case of Neon, all Solana transactions are paid by an operator, whose fee wallet therefore
has to sign. A malicious Ethereum contract could specify the Operators fee wallet as signer in the CPI
call, which the Solana runtime will treat as valid. Thus, the Operators signature is escalated and can be
used on an arbitrary call.

Example Attack Scenario:

• Attacker deploys a Solana contract, that transfers all funds from all signing wallets to his own
wallet.

• Attacker deploys an Eth contract that makes an external call to the Solana contract, specifying
the operator’s fee wallet as signer.

• The attacker sends an Eth instruction which calls his Eth contract to the victim operator.
• The operator will sign the Solana transaction containing the eth transaction and execute it.
• All funds from the operator’s fee wallet are stolen into the attacker’s wallet.

It is important to note that using invoke will not fix this issue, as invoke internally calls invoke_signed
without signer_seeds. Instead, Neon has to manually verify that the CPI instruction does not specify
the operator as a signer.

Solution The Neon team won’t include this functionality in the initial release. Neodyme verified this
fix.

• https://github.com/neonlabsorg/neon-evm/issues/269
• https://github.com/neonlabsorg/neon-evm/pull/271

13

https://github.com/neonlabsorg/neon-evm/issues/269
https://github.com/neonlabsorg/neon-evm/pull/271

Security Audit – Neon EVM

CreateAccount allows to create di�erent accounts with same Ethereum address (High)

Severity Impact A�ected Component

High Transaction Replay / Contract Mutability CreateAccount

Accounts are created as program-derived-addresses (PDAs). They have a seed chosen to ensure the
PDA can not have a standard private key. Neon does not check that the seed used for the provided
PDA account is the first one. This allows an attacker to create separate Neon accounts for the same
Ethereum address.

This new account will have its own Ethereum balance and nonce. Because the nonce is reset, old
transactions can be replayed. In order for the nonce to match, they have to be replayed in-order. But as
transactions can be started and immediately cancelled, it is possible to fast-forward the nonce without
actually executing all old transactions. Old transactions are not persisted on-chain directly, but will
be available to query via RPC, so the attacker does not have to actively observe an account from the
beginning.

A small limitation exists, because the new Neon account will have its own Eth balance. This means
accessing the original user’s Eth funds directly is impossible, and the attacker will have to provide the
necessary Eth funds for all replayed transactions. But because everything, except for the native Eth
balance is shared, there will be many transactions, where the value of the transferred Eth is lower than
the value generated by the instuction. This is for example the case for most ERC20 transfers.

Another attack-vector possible with this bug, is to deploy two di�erent contracts at the same Ethereum
address! Regular users will always use the “main” contract at the lowest seed, since this is the one all
normal operators will derive. But the attacker can capture selected transactions and provide Neon with
his duplicated account, which contains di�erent code. This potentially malicious “shadow” contract
has the same authority because it runs at the same address.

Solution Neon now verifies that the seed is the first one, which is the one returned by fn Pubkey::
find_program_address(). Neodyme verified this fix.

• https://github.com/neonlabsorg/neon-evm/issues/264

14

https://github.com/neonlabsorg/neon-evm/issues/264

Security Audit – Neon EVM

Transaction’s target contract not verified (High)

Severity Impact A�ected Component

High Loss of Funds Call Entrypoints

The Call entrypoints receive an Ethereum transaction, which is signed for a specific contract (trx .
to). Neon does not verify that the given contract-account matches the trx . to address. Therefore a
malicious operator could take the signed transaction and execute it against a di�erent contract.

This will allow anyone who knows a not-yet-executed, but signed, user transaction to steal all Eth
tokens transferred in it. This can be done by calling the transaction against an attacker deployed
contract, that does nothing except receiving funds without aborting.

Additionally, this attack is interesting for ERC20 contracts, where a transfer of Token X could be turned
into a transfer for Token Y, but with the same recipient and token-amount.

This attack can be trivially executed the user’s chosen operator, but also by an outside attacker that is
able to intercept the user’s transaction while it is uploaded to Solana.

Solution The Neon team implemented a check in check_ethereum_authority. Neodyme verified
this fix.

• https://github.com/neonlabsorg/neon-evm/issues/262

15

https://github.com/neonlabsorg/neon-evm/issues/262

Security Audit – Neon EVM

ERC20 Wrapper allows privilege escalation (High)

Severity Impact A�ected Component

High Contract can steal all of users Eth/ERC20 tokens ERC20Wrapper

The current implementation of the ERC-20 Wrapper has a severe bug, which allows a contract called by
a user to steal all ERC20 and Eth tokens from said user.

The goal of the wrapper is to expose the native Solana SPL tokens via an ERC-20-like interface to
contracts. In particular, this means providing a transfer (address _to, uint256 _value) function.

On Ethereum, one user-account can have many di�erent ERC-20 tokens simply by holding their balances
in the ERC-20 contracts. The user’s address is used as an identity to receive tokens, and as an authority
to transfer them.

The same is possible on Solana via associated-token-accounts (ATAs). A user’s public-key is used to
derive addresses to token accounts for specific mints. This means that two pieces of information are
necessary to transfer SPL tokens to a user: the user’s public-key, and the mint public-key. On Ethereum,
the situation is similar. You need the user’s public-key and the ERC-20 contract address.

The ERC20-Wrapper now has the task to convert the mint address into an ERC-20 contract
address and vice versa. It does so by forwarding all calls it receives to Neons pre-compiled
SYSTEM_ACCOUNT_ERC20_WRAPPER contract via a delegate-call while injecting the Solana mint
address into the arguments. The Solana mint address is stored in the wrapper’s contract storage when
the wrapper is deployed.

Because the wrapper is not a privileged contract in any way, any contract can pretend to be the wrapper
for many di�erent SPL tokens. A malicious contract can thus transfer arbitrary ERC-20 tokens from any
user that calls it.

From a technical perspective, this is caused by Neon’s ERC-20 system-call blindly trusting the caller
as the source of the transaction. The wrapper uses a delegate-call, in which the caller is not changed,
so a user can transparently access his own SPL account and not the wrappers. Any contract can
delegate_call into the ERC-20 system-call, and the caller for the original contract is seen as trusted.
On real Ethereum, a delegate_call to an ERC-20 contract would do nothing since the actual storage of
said ERC-20 contract can not be modified when a delegate call is used.

Another interesting, though not necessarily problematic, fact about this implementation: Neon’s
Ethereum tokens are also represented as SPL tokens and use the same authority as ERC-20 tokens. It is
thus possible to transfer Eth via ERC-20 calls and also to create allowances for Eth.

16

Security Audit – Neon EVM

Solution Instead of using associated-token-addresses for the Ethereum user’s SPL token accounts,
Neon now uses custom-derived accounts. This means each wrapper now defines its own distinct
ERC-20 token, even if the underlying SPL token is the same. These separate token accounts for each
ERC20 contract are created via EvmInstruction :: ERC20CreateTokenAccount, with the wallet address
now being dependent on the user, the SPL-mint, and also the Ethereum wrapper address. Neodyme
has verified the fix.

• https://github.com/neonlabsorg/neon-evm/issues/279
• https://github.com/neonlabsorg/neon-evm/pull/291

17

https://github.com/neonlabsorg/neon-evm/issues/279
https://github.com/neonlabsorg/neon-evm/pull/291

Security Audit – Neon EVM

Block of ERC20 Allowances and Ethereum addresses (Medium)

Severity Impact A�ected Component

Medium Partial Denial of Service Account Creation

The Solana accounts for ERC20 Allowances and Ethereum accounts are created through the Solana
syscall SystemInstruction :: CreateAccount. This is an issue since it will fail if the account already
exists, with existing being defined via the account balance: to . lamports() > 0. Everybody can transfer
lamports to any address, so an attacker could block specific addresses from creation by transferring
some lamports to it.

Most addresses Neon uses are deterministically computed from seeds. For example, an attacker can
block the creation of a specific Ethereum account in EvmInstruction :: CreateAccount.

In the context of Neon ERC20 Allowances, an account derived from (mint, owner, spender) is created.
An attacker can block arbitrary of these tuples, preventing the creation of allowances for a specific
ERC20/owner/spender instance. This can be a big issue if contracts use a pull-based model to transfer
funds. For example, a user could be blocked from withdrawing funds from a swap.

Solution The Neon now provides implements the create_pda_account function, which checks if the
account already has lamports and if so transfers, allocates and assigns manually. Neodyme verified
this fix.

• https://github.com/neonlabsorg/neon-evm/issues/278

18

https://github.com/neonlabsorg/neon-evm/issues/278

Security Audit – Neon EVM

Nonce increment does not get written into account (Low)

Severity Impact A�ected Component

Low Cancelled TX can be restarted Cancel Entrypoint

The Cancel instruction is used to cancel a pending instruction. This can be done either by the original
operator or by another operator a�er the priority period has passed. To ensure a canceled instruction
stays canceled, the nonce of the caller account is increased. However, this change is not written back
into the account using AccountData::pack and therefore does not persist, making it possible to start
the same transaction again.

Solution Neon now correctly writes the nonce-increase into the account. Neodyme verified the fix.

• https://github.com/neonlabsorg/neon-evm/issues/295
• https://github.com/neonlabsorg/neon-evm/pull/326

19

https://github.com/neonlabsorg/neon-evm/issues/295
https://github.com/neonlabsorg/neon-evm/pull/326

Security Audit – Neon EVM

Solana Chain Inconsistencies (Low)

Severity Impact A�ected Component

Low Etherum contracts might observe inconsistent state Solana Interactions

A contract running inside Neon has multiple avenues to read data from the Solana blockchain. These
values are not always constant during the iterative execution of a longer contract. The current imple-
mentations do not always cache the data, making it possible that the same call returns di�erent values
in a single Ethereum transaction. This makes Time-of-Check – Time-of-Use (TOCTOU) bugs possible.

Any value that is read from Solana, which is not controlled by Neon alone, should be cached.

More specifically, the values of the current block, block_time and all SPL (and ERC20) token balances
can change:

• The erc20-wrapper syscall can provide total_supply and balances of SPL token accounts, which
are changeable between iterations of neons iterative executions.

• Everything that uses apply_to_solana_account is a�ected.
• A similar bug also a�ects the re-initialization of the ProgramAccountStorage when execution

resumes. All SPL balances are read fresh. This is an issue if (ERC-20) tokens are traded without
Neon on native Solana, though balances can only increase because, inside Neon, the account is
blocked so that it won’t sign a transfer instruction.

Solution Neon now caches all values read from Solana, which are not controlled by Neon alone.
Neodyme verified the fix.

• https://github.com/neonlabsorg/neon-evm/issues/296
• https://github.com/neonlabsorg/neon-evm/pull/318

20

https://github.com/neonlabsorg/neon-evm/issues/296
https://github.com/neonlabsorg/neon-evm/pull/318

Security Audit – Neon EVM

Block of Contract Creation (Low)

Severity Impact A�ected Component

Low Block a contract from deploying another contract Account Creation

When creating an Ethereum account via EvmInstruction :: CreateAccount, the caller freely chooses if
the target account should be a user-account or a code-account. The two types are identical, except
that the code-account stores the address of a provided program_code account, which will be used to
store the contract’s code.

The user/code choice is currently final, as there is no way to “upgrade” a user-account into a code-
account.

Now consider the CREATE opcode in Ethereum. It allows a contract to deploy another new contract.
This new contract’s address will be derived only from the old contract’s address and nonce.

This information is known to everyone. An attacker could thus create the account where the next
contract would be deployed at as a user-account.

The targeted contract now could never use the CREATE opcode, as Neon can not allow creating a
contract in a user-account.

CREATE2 can be broken the same way, but there you cannot block all future calls by creating a single
eth-account. Instead, you have to actively block the eth-account for each salt the contract is expected
to supply to create2 individually.

This is exactly the use case CREATE2 is intended for:

Allows interactions to (actually or counterfactually in channels) be made with addresses that
do not exist yet on-chain but can be relied on to only possibly eventually contain code that has
been created by a particular piece of init code. Important for state-channel use cases that involve
counterfactual interactions with contracts.

Overall, this bug has a low impact, as Neon can be upgraded to allow user-to-contract account upgrades
when this issue occurs, and nothing is permanently blocked.

Solution The Neon team now allows resizing existing accounts. In the same vein, they allow to
change a user account into a code account, but only if the user account has not made a transaction
yet. It might still be possible to trip up automated contract-deploy systems, but it can always be fixed
manually and the deploy system improved to handle this attack correctly. Neodyme verified the fix.

21

Security Audit – Neon EVM

• https://github.com/neonlabsorg/neon-evm/issues/355
• https://github.com/neonlabsorg/neon-evm/pull/356
• https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1014.md

22

https://github.com/neonlabsorg/neon-evm/issues/355
https://github.com/neonlabsorg/neon-evm/pull/356
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1014.md

Security Audit – Neon EVM

Temporary Transaction Store can be overwritten (Low)

Severity Impact A�ected Component

Low Operator operation can be disturbed Write Entrypoint

The current architecture of EvmInstruction :: Write allows anyone to write into any empty code account
and accounts of type AccountData::Empty.

This is an issue, as operators currently use these empty data accounts to temporarily store bigger
transactions before they can begin executing them. An attacker can partially overwrite these accounts,
invalidating the Ethereum signature and preventing the TX from being executed. A sophisticated
attacker could use this to block an operator from executing any large transaction.

Solution Neon now only allows writes into accounts created from the operators pubkey and a seed
with Pubkey::create_with_seed, where the operator has to sign. It is thus no longer possible to write
into accounts of other operators. Neodyme has verified the fix.

• https://github.com/neonlabsorg/neon-evm/issues/261
• https://github.com/neonlabsorg/neon-evm/pull/287

23

https://github.com/neonlabsorg/neon-evm/issues/261
https://github.com/neonlabsorg/neon-evm/pull/287

Security Audit – Neon EVM

External calls allow reentrancy into the Neon program (Low)

Severity Impact A�ected Component

Low Could break some primitives external_call

Neon has a built-in SYSTEM_ACCOUNT_SOLANA contract that allows any EVM contract to call a native
Solana contract. The actual call is implemented in account_storage.rs in the external_call function.

Currently, this also allows to call the Neon contract itself again. While we do not see any immediate
security implications, this kind of re-entrancy can be dangerous. If there isn’t a good reason to allow
this, we recommend blocking Neon from calling itself.

One example where this could be an issue is clients that consume the OnEvent and OnReturn CPI calls.
These might now occur multiple times on di�erent call-stack-depths, which clients likely won’t expect.
This can cause clients to miss important events.

Solution The Neon team won’t include this functionality in the initial release. Neodyme verified this
fix.

• https://github.com/neonlabsorg/neon-evm/issues/269
• https://github.com/neonlabsorg/neon-evm/pull/271

24

https://github.com/neonlabsorg/neon-evm/issues/269
https://github.com/neonlabsorg/neon-evm/pull/271

Security Audit – Neon EVM

Unused entrypoints available (Low)

Severity Impact A�ected Component

Low Increased Attack Surface Entrypoint

There are multiple entrypoints defined, which are not expected to be used, specifically Finalize and
CreateAccountWithSeed. Removing these functions will reduce Neon’s attack surface.

Solution The functions are le�over from a previous iteration and are now removed. Neodyme verified
the fix.

• https://github.com/neonlabsorg/neon-evm/issues/263
• https://github.com/neonlabsorg/neon-evm/issues/265

25

https://github.com/neonlabsorg/neon-evm/issues/263
https://github.com/neonlabsorg/neon-evm/issues/265

Security Audit – Neon EVM

Neodyme AG

Dirnismaning 55
Halle 13
85748 Garching
E-Mail: contact@neodyme.io

https://neodyme.io

26

https://neodyme.io

	Introduction
	Project Overview
	Scope
	Methodology

	Findings
	Instruction Sysvar does not get checked (Critical)
	Contracts can be deleted and modified (Critical)
	External Calls execute Solana instruction instantly (Critical)
	External calls always sign on behalf of the caller (Critical)
	Denial of Service (High)
	Infinite Execution Attack
	Cancel-and-Refresh Attack

	External Calls escalate operators signature (High)
	CreateAccount allows to create different accounts with same Ethereum address (High)
	Transaction’s target contract not verified (High)
	ERC20 Wrapper allows privilege escalation (High)
	Block of ERC20 Allowances and Ethereum addresses (Medium)
	Nonce increment does not get written into account (Low)
	Solana Chain Inconsistencies (Low)
	Block of Contract Creation (Low)
	Temporary Transaction Store can be overwritten (Low)
	External calls allow reentrancy into the Neon program (Low)
	Unused entrypoints available (Low)

