
Security Audit – Lido on Solana

Neodyme

Technical Lead: Thomas Lambertz

2021-08-31

Security Audit – Lido on Solana

Contents

Project Summary 3

Introduction to Solido 3

Methodology 4

Findings 5
Attackers Can Mint Unlimited stSOL due to Missing Reserve Account Check (Critical) 6
SPL Account Closing May Cause Problems (Low) . 8
RemoveValidator Instruction has Incomplete Manager Verification (Low) 9
Deletion of Rewards with Possible Economic Attack (Low) 10
Late Implementation of Unstake Accounts and Denial of Withdrawal (Low) 12
Missing Owner Checks in Account Validation (Info) . 13
Missing Checks on Mint (Info) . 14
Config Accounts are not Program Derived Accounts (Info) 15

2

Security Audit – Lido on Solana

Project Summary

Lido engaged Neodyme to do a detailed security analysis of their on-chain program. A thorough audit
was done from August 25th to August 31st.

Main target of the audit was the source-code of the solido on-chain program in version v0.5, specifically
commit hash 8dc658ea6913b63bc3e15e381c91c08ed61e2838.

The code is found to be written to a high standard, and the team expertly responded to all questions.

Nevertheless, the audit revealed one major vulnerability and a few low-priority findings, which were
reported and subsequently fixed by the Lido team. This report describes these findings in detail.

Introduction to Solido

Lido is a liquid staking protocol. It currently supports Ethereum and Terra, intending to extend support
to the Solana blockchain. The Solana smart-contract is called solido and is the target of this audit.

Users can deposit the native Solana SOL token into the solido contract, which is then staked to a
selected set of validators in a uniform distribution. The user receives stSOL, a token representing their
share of the staked value, which can be freely traded while the staked SOL is accruing staking rewards.
To end staking, the user can either swap their stSol for an active stake account or just sell the stSol
on the open market. stSol automatically appreciates in value via the rewards generated by staking.

Because of the nature of the program, it is expected to hold large amounts of funds.

The solido source-code is public, and documentation which contains information for end-users, but
also some internals, is available at:

• Contract: https://github.com/ChorusOne/solido
• Documentation: https://chorusone.github.io/solido

3

https://lido.fi/
https://neodyme.io
https://github.com/ChorusOne/solido
https://chorusone.github.io/solido

Security Audit – Lido on Solana

Methodology

Neodyme’s audit team performed a comprehensive examination of the solido contract. The team,
which consists of security engineers with extensive experience in Solana smart contract security,
reviewed and tested the code of the on-chain contract, paying particular attention to the following:

• Ruling out common classes of Solana contract vulnerabilities, such as:

– Missing ownership checks,
– Missing signer checks,
– Signed invocation of unverified programs,
– Solana account confusions,
– Re-initiation with cross-instance confusion,
– Missing freeze authority checks,
– Insu�icient SPL-Token account verification,
– Missing rent exemption assertion,
– Casting truncation,
– Arithmetic over- or underflows,
– Numerical precision errors,

• Checking for unsafe design which might lead to common vulnerabilities being introduced in the
future,

• Checking for any other, as-of-yet unknown classes of vulnerabilities arising from the structure of
the Solana blockchain,

• Ensuring that the contract logic correctly implements the project specifications,
• Examining the code in detail for contract-specific low-level vulnerabilities,
• Ruling out denial of service attacks,
• Ruling out economic attacks,
• Checking for instructions that allow front-running or sandwiching attacks,
• Checking for rug-pull mechanisms or hidden backdoors.

4

Security Audit – Lido on Solana

Findings

This section discusses solido’s overall design, followed by a detailed description of all our findings and
their resolutions.

Every program on Solana has to store data somehow. There are multiple approaches to this, and solido
chose one of the safest ones: each instance of the solido program has a single unique account that
stores all data. While solido allows for multiple instances to exist simultaneously, it is written in a way
that rules out many typical Solana vulnerabilities by design. By storing all state in a single account
that is subsequently required in every operation, all attacks that work by confusing between multiple
program-owned accounts are by definition impossible. This approach has the minor drawback that
all solido contract invocations have to happen sequentially, but that should not be an issue due to
Solana’s performance.

The program code is well-structured and readable, contains helpful comments, and the commit mes-
sages are descriptive.

Most Solana contracts are deployed using the upgradable loader. An upgrade authority can, at
any time, make changes to the deployed contract. As solido is not deployed to the Solana-Mainnet
yet, we cannot make any assertions as to the contract-upgradability. However, unlike many other
projects, Lido already has a distributed set of trusted owners, which they use in a multisig contract.
This provides a higher level of protection, as the decentralized autonomous organization (DAO) has to
commit any upgrade, ruling out a single-party rug-pull by the developer.

In total, there was one critical, four low, and three info findings.

Name Severity

Attackers Can Mint Unlimited stSOL due to Missing Reserve Account Check Critical

RemoveValidator Instruction has Incomplete Manager Verification Low

SPL Account Closing May Cause Problems Low

Deletion of Rewards with Possible Economic Attack Low

Late Implementation of Unstake Accounts and Denial of Withdrawal (Low) Low

Missing Owner Checks in Account Validation Info

Missing Checks on Mint Info

Config Accounts are not PDAs Info

5

Security Audit – Lido on Solana

Attackers Can Mint Unlimited stSOL due to Missing Reserve Account Check (Critical)

Severity Impact A�ected Component

Critical Loss of Funds ProcessDeposit

The deposit function process_deposit has a critical security vulnerability caused by a missing
account check. This allows an attacker to mint and receive unlimited stSOL, which allows him to
asymptotically steal all funds from the pool.

Specifically, it is not verified that the reserve account passed to process_deposit the correct one.
Instead, the contract should validate it against lido.reserve_account, which is easily done with
fn check_reserve_account() used by all other functions which access the reserve.

An attacker can thus supply an attacker-controlled reserve account that he passes toprocess_deposit
instead of the actual reserve. The deposit function will transfer all deposited SOL into the reserve

account and mint the appropriate number of stSol tokens. But since the attacker controls the reserve
account, he can withdraw the SOL from there and has minted stSol from nothing. Since he retains
ownership of his SOL, he can repeat this process as many times as he wants, generating an arbitrary
number of stSOL. He can then use the stSOL to withdraw SOL from the contract, asymptotically
allowing him to drain the contract of all staked SOL.

The following is the relevant part of the code:

1 pub fn process_deposit(
2 program_id: &Pubkey,
3 amount: Lamports,
4 accounts_raw: &[AccountInfo],
5) -> ProgramResult {
6 let accounts = DepositAccountsInfo::try_from_slice(accounts_raw)?;
7 if amount == Lamports(0) { // ^
8 msg!("Amount must be greater than zero"); // |
9 return Err(ProgramError::InvalidArgument); //no check |

10 } // |
11 let mut lido = deserialize_lido(program_id, accounts.lido)?; // v
12
13 invoke(
14 &system_instruction::transfer(accounts.user.key, accounts.

reserve_account.key, amount.0),
15 &[
16 accounts.user.clone(),
17 accounts.reserve_account.clone(), // SOL is transferred to

unchecked reserve
18 accounts.system_program.clone(),
19],

6

Security Audit – Lido on Solana

20)?;
21 /* [...] */

Solution The Lido team responded immediately by adding a regression test and adding the missing
check. The latter was done by calling the pre-existing function check_reserve_account. Neodyme
verified the fix.

References:

• https://github.com/ChorusOne/solido/pull/383

7

https://github.com/ChorusOne/solido/pull/383

Security Audit – Lido on Solana

SPL Account Closing May Cause Problems (Low)

Severity Impact A�ected Component

Low Potential denial of rewards SPL Token Interactions

The Solana token program has a CloseAccount instruction. It can be used by the token account
owner to delete his account.

This account closing can cause issues in solido because it uses three types of externally controlled
SPL-Token accounts: Validator-Rewards, Developer, and Treasury.

If the developer or treasury accounts are deleted, all invocations to CollectValidatorFee will fail,
as it unconditionally mints stSol tokens as fees to the developer and treasury accounts. When these
accounts cease to exist, the minting will fail. This also means solido will stop accruing staking rewards,
as nobody can withdraw from the validators-vote accounts anymore.

Since the validator rewards are paid out asynchronously, there is no direct impact to the contract
when a validator closes his token account. However, it will prevent said validator from being removed,
as he will be stuck with an internal balance greater than zero, which nobody can withdraw. This has
no benefit for the validator. The only adverse e�ect is that this validator will bloat the validator list
indefinitely.

Solution The Lido team responded by analyzing the risk for each of the three externally controlled
SPL-Token accounts. We paraphrase:

• The treasury account is controlled by the DAO. It is assumed that the DAO will act in the interest
of the contract.

• The developer account is controlled by the developers, which are assumed to be trusted.
• The accounts into which validator rewards are payed are indeed controlled externally, and a

malicious validator can block removal of their validator from the validator list. However, this has
only cosmetic e�ects.

References:

• https://github.com/ChorusOne/solido/issues/400

8

https://github.com/ChorusOne/solido/issues/400

Security Audit – Lido on Solana

RemoveValidator Instruction has Incomplete Manager Verification (Low)

Severity Impact A�ected Component

Low Required permissions for validator removal are unclear RemoveValidator

The manager in the RemoveValidator instruction is insu�iciently validated. It is only asserted that
the manager has signed the transaction but never that the manager matches the account stored in
lido.manager. This does not have any security implications yet, since validators can only be removed
a�er they are unstaked and have no stake accounts anymore. For a previously active validator, this
can only happen when the manager is in the process of removing it anyway. Furthermore, an attacker
cannot prevent a new validator from being added, since adding the validator and staking to it can be
wrapped into a single transaction.

Solution The Lido team removed the maintainer signature requirement as it was a le�over from a
previous iteration.

References:

• https://github.com/ChorusOne/solido/pull/388

9

https://github.com/ChorusOne/solido/pull/388

Security Audit – Lido on Solana

Deletion of Rewards with Possible Economic Attack (Low)

Severity Impact A�ected Component

Low Economic Attack, Loss of Rewards Exchange Rate Update/Deposits

Solido’s SOL to stSol exchange rate is updated once a�er the beginning of each epoch. This update
has to be triggered. There is a short window of time in between the epoch boundary and this update,
during which withdrawals are blocked, but deposits are allowed.

The fact that deposits are allowed allows an unlikely economic attack. In essence, an attacker can
cause stake to deactivate for free, which will lower the rewards solido generates for all users. However,
because of the nature of the attack, it is deemed very unlikely to happen.

Details When a user deposits SOL right a�er the epoch boundary, but before the exchange rate is
updated, he receives an stSOL amount that is calculated via the old exchange rate. Note that this does
not give the user a direct advantage. A user could have deposited the SOL exactly one slot before the
epoch boundary and would have gotten the same amount of stSol.

But there is another relevant interaction between the solido contract and the real epoch boundary:
When a user withdraws funds, solido returns an active stake account, which is subject to one epoch of
deactivation time. At the real epoch boundary, funds that have been withdrawn in the previous epoch
become available to the withdrawee. In particular, they are available to be re-deposited at the same
exchange rate they were withdrawn at.

This does lead to an interesting, albeit slightly far-fetched attack in which an attacker can cause the
contract to miss out on staking rewards. The attack works as follows:

Immediately before an epoch boundary, the attacker buys or lends a large amount of stSOL. He
directly uses this to withdraw at the old exchange rate, receiving a delegated stake account which
he immediately deactivates. A�er the epoch boundary, he has full control of the SOL in the stake
account. The attacker immediately re-deposits these SOL into the Lido contract – before the update of
the exchange rate is triggered – and receives the same number of stSOL as he had before he withdrew
(note that there are no deposit or withdraw fees). He can now sell these tokens or repay his loan.

So far, this did not create any financial gain for the attacker. However, the contract has now missed
out on the staking rewards for the attacker’s share of SOL, since it had to pay out a delegated stake
account and has received unstaked SOL. This causes the inherent value of the stSOL token to increase
less as it otherwise would have, as the appreciation from the attacker’s staking rewards is missing.

10

Security Audit – Lido on Solana

This under-performance would presumably a�ect the market price of stSOL, causing it to drop a�er
the attack is executed since the assumed increase in the inherent value of stSOL was already priced in.
Hence if the attacker shorts the price of stSOL before executing the attack, he may benefit.

Note that this attack requires multiple market conditions to be met, and potential gains are low. Market
fees for shorting stSOL would probably outweigh the potential financial gain. We hence estimate the
probability of the attack being executed as very low.

Solution Lido agreed that the probability of an exploit is extremely low and that the incentive for
an attacker is minimal. Additionally, they argued that the risk of having to race the maintenance bot
before the exchange rate update might additionally deter attackers.

Nonetheless, they discussed the issue internally and considered fixing this by temporarily disabling
deposits in the short period between epoch boundary and exchange rate update. Ultimately, they
decided against this. If an attack of this type is ever noticed, the potential e�ect is minimal, and it could
be immediately prevented from re-occurring by deploying the fix suggested above.

References:

• https://github.com/ChorusOne/solido/issues/403

11

https://github.com/ChorusOne/solido/issues/403

Security Audit – Lido on Solana

Late Implementation of Unstake Accounts and Denial of Withdrawal (Low)

Severity Impact A�ected Component

Low While unstaking, rewards cannot be withdrawn Unstake Mechanism

At the start of the audit, the mechanism for moving funds from unstake accounts back to the reserve
was still unimplemented. Unstake accounts in general seemed incomplete. This was fixed towards the
end of the audit.

Perhaps as a consequence of this, a bug was present in the Withdraw instruction. In a check at the
beginning ofprocess_withdraw, total stake, including unstake accounts, is compared with total stake
excluding unstake accounts when determining the validator with the highest stake. This meant that if
the validator with the most stake had an unstake account with any amount of funds, all withdrawals
would fail.

Solution The mechanisms for unstake accounts were implemented toward the end of the audit
time-frame and subsequently reviewed by Neodyme. However, the review was kept brief due to limited
time.

This specific bug in the Withdraw instruction was fixed immediately.

References:

• https://github.com/ChorusOne/solido/pull/391
• https://github.com/ChorusOne/solido/pull/393

12

https://github.com/ChorusOne/solido/pull/391
https://github.com/ChorusOne/solido/pull/393

Security Audit – Lido on Solana

Missing Owner Checks in Account Validation (Info)

Severity Impact A�ected Component

Info - Account Data Validation

The account validation routines (in particular, PartialVoteState::deserialize and
check_is_st_sol_account) do not check the owner of the passed accounts. This is rele-
vant, for example, for the validator stSOL reward accounts or the validator vote accounts. Normally,
these accounts are owned by the Vote Program or the Token Program. However, the validation routines
are missing this owner check and only verify that the account’s data has the correct format.

A malicious party could create a fake vote account or SPL account and pass it to the contract. As soon
as it is stored in the contract, it could use its ownership of these accounts to delete them, creating
a new account at the same address. For example, this means that a malicious validator could get
the contract to accept a vote account that does not adhere to the vote account parameters that the
contract expects.

As this is only relevant for newly added accounts, which should be verified by the DAO anyways, we
consider this finding Info.

Solution The missing ownership checks were added.

References:

• https://github.com/ChorusOne/solido/issues/401
• https://github.com/ChorusOne/solido/pull/411

13

https://github.com/ChorusOne/solido/issues/401
https://github.com/ChorusOne/solido/pull/411

Security Audit – Lido on Solana

Missing Checks on Mint (Info)

Severity Impact A�ected Component

Info Malicious solido instance can
lock tokens

Initialize/Mint Verification

The contract does not check the freeze_authority of the stSOL mint. A malicious Lido manager
could use this to create a malicious Lido instance and convince people to deposit their SOL. The users
would receive stSOL from the corrupted mint. The malicious manager could then freeze the user-held
stSOL via the attacker-controlled freeze_authority, hence preventing users from withdrawing
their SOL.

Note that this only applies to new Lido instances created by untrusted parties.

Solution Lido stated that they do not see non-o�icial instances of the contract as a problem and
that the manager is assumed to be trusted for the o�icial instance. Additionally, the information on
the freeze_authority is available publicly on the blockchain and can hence be verified.

References:

• https://github.com/ChorusOne/solido/issues/402

14

https://github.com/ChorusOne/solido/issues/402

Security Audit – Lido on Solana

Config Accounts are not Program Derived Accounts (Info)

Severity Impact A�ected Component

Info Increased Maintenance burden Configuration Account

As the solido contract only ever needs to support a single instance, the config account could have been
made a singleton. This would prevent attacks, in which a new instance of the contract is re-initialized
with overlapping accounts, enabling cross-instance attacks.

A good way to create such a singleton config is to use a Program Derived Account (PDA) with hardcoded
seeds. However, the current implementation is just as secure, as the Lido team carefully designed the
contract to avoid these cross-instance attacks. It does create a small maintenance burden, though,
since all instructions added in the future must also be resistant.

Solution The Lido team agreed that this would have been a better choice. However, due to limited
time before deployment, they prefer not to make such a sweeping change to the contract. It would
also make a re-audit of the new contract necessary, which would significantly delay their launch. Since
it currently poses no threat to the security of the contract, they prefer to keep the current design.

15

Security Audit – Lido on Solana

Neodyme AG

Dirnismaning 55
Halle 13
85748 Garching
E-Mail: contact@neodyme.io

https://neodyme.io

16

https://neodyme.io

	Project Summary
	Introduction to Solido
	Methodology
	Findings
	Attackers Can Mint Unlimited stSOL due to Missing Reserve Account Check (Critical)
	SPL Account Closing May Cause Problems (Low)
	RemoveValidator Instruction has Incomplete Manager Verification (Low)
	Deletion of Rewards with Possible Economic Attack (Low)
	Late Implementation of Unstake Accounts and Denial of Withdrawal (Low)
	Missing Owner Checks in Account Validation (Info)
	Missing Checks on Mint (Info)
	Config Accounts are not Program Derived Accounts (Info)

