Security Report - Streamflow Protocol

Lead Auditor: Sebastian Fritsch
Second Auditor: Mathias Scherer

Administrative Lead: Thomas Lambertz

May 16" 2024

Security Report - Streamflow Protocol

Table of Contents

Executive Summary

1 Introduction

FindingsSummary e e e

2 Scope

3 Project Overview

Functionality o e e e e
On-ChainDataand Accounts o i i i e e
Feesand Rent e e e e
INStructions e e e e e e e e e e e
Authority Structure e e e
Upgrade Authority o e
ContractCreator i e e e e e e e
Contract Recipient e e e

4 Findings

ND-STR2-L1 [Low; Resolved] Pausing logic can result in unexpected behaviour
ND-STR2-11 [Info; Resolved] create_account allows forDoS attack

[
ND-STR2-12 [Info; Acknowledged] Floating point math can lead to minor rounding errors
ND-STR2-13 [
[

Appendices
A Methodology
B Vulnerability Severity Rating

C About Neodyme

Info; Resolved] Presence of unused but broken utility function
ND-STR2-14 [Info; Resolved] Missing SPL Token 2022 extension support

10

.11
. 13

.17
.19

22
23

24

2/25

Security Report - Streamflow Protocol

Executive Summary

Neodyme audited Streamflow’s on-chain token distribution protocol program during April and Mai
2024.

The auditors found that the Streamflow distributor program comprised a clean design and high code
quality. According to Neodymes Rating Classification, 0 critical or high vulnerabilities and 0 medium-
severity issues were found. The number of findings identified throughout the audit, grouped by
severity, can be seen in Figure 1.

Critical | O
> High' O
b5 Medium | 0
v
Informational 4

Number of Findings

Figure 1: Overview of Findings

All findings were reported to the Streamflow developers and addressed promptly. Neodyme verified
the security fixes as complete.

3/25

Security Report - Streamflow Protocol

Introduction

In April 2024, Streamflow commissioned Neodyme to conduct a detailed security analysis of Stream-
flow’s on-chain token distribution protocol. Neodyme did an initial peer-review of the program in
February 2022.

The first pass by an auditor was between April 9th and April 17th and the second between Mai 7th and
Mai 15th.

The audit mainly focused on the contract’s technical security but also considered its design and
architecture. After the introduction, this report details the audit’s Scope, gives a brief Overview of the
Contract’s Design, then goes on to document our Findings.

Neodyme would like to emphasize the high quality of Streamflow’s work. Streamflow’s team always
responded quickly and competent to findings of any kind. Streamflow invested significant effort and
resources into their product’s security. Their code quality is above standard, as the code is very well
documented, naming schemes are clear, and the overall architecture of the program is well thought
out, clean and coherent.

Additionally, Neodyme delivered the Streamflow team a list of nitpicks and additional notes that are
not part of this report.

Findings Summary

During the audit, 1 security-relevant and 4 informational findings were identified.

In total, the audit revealed:
0 critical « 0 high-severity « 0 medium-severity « 1 low-severity « 4 informational

issues.

All findings are detailed in section Findings.

4/25

https://streamflow.finance/
https://neodyme.io

Security Report - Streamflow Protocol

Scope

The contract audit’s scope comprised of two major components:

« Implementation security of the source code
« Security of the overall design

All of the source code, located at https://github.com/streamflow-finance/protocol, is in scope of this
audit. However, third-party dependencies are not. Relevant source code revisions are:

« db63597baa4e994dff2c67db55e44d1ldecec18c5 « Start of the first audit pass
« c2deed4fb65aa2a712aedb2decfc182f192c785d23 « Start of the second audit pass
+ 4248294ef9dac378632ac32dbe2786828db2d91b « Last reviewed revision

5/25

https://github.com/streamflow-finance/protocol

Security Report - Streamflow Protocol

Project Overview

This section briefly outlines the Streamflow protocol’s functionality, design, and architecture, then
discusses its authorities and security features.

Functionality

The Streamflow protocol provides a way to distribute tokens in a time-vested manner.

A user can vest tokens that will be distributed over time to a pre-defined spender. Each such ar-
rangement is called a ‘Contract’. The vesting contract consists of a cliff that is unlocked at a specified
timestamp and an amount of money that linearly unlocks over a specified time period. All the tokens
that will be distributed must be deposited upfront, ensuring their distribution later on.

The contract creator can also decide to top up the current amount of money and thereby extend the
running time and capital of the vesting contract. Furthermore, Streamflow allows the creator to enable
additional settings. For example pausing, and ability to cancel the contract. On cancel, all currently
unlocked funds will be transferred to the recipient, and the remaining funds will be returned to the
sender. A creator can also define the contract as updatable, which allows to update the withdraw
frequency and amount, as well as enabling automatic withdrawals. When enabled, Streamflow also
offers the possibility to change a contract’s recipient address, thereby transferring the remaining claims
to a new user. A contract can specify whether the recipient, creator, or both can transfer or cancel the
contract.

Streamflow offers automatic withdrawals, a service in which an off-chain bot calls the withdraw function
on behalf of the contract recipient, relieving him from manually withdrawing his unlocked funds. The
contract creator pre-transfers the transaction fees for this.

On-Chain Data and Accounts

The contract’s metadata, a crucial component, is stored in a single program-owned account type. This
metadata includes the locked amount, timestamps for start, end and cliff, the recipient of the tokens,
the token mint, and more. Streamflow uses one single account per vesting contract.

Additionally, every contract has an associated escrow account, where the tokens are stored for further
distribution. This PDA is derived by the following seeds: [""strm'", metadata_pubkey]

6/25

Security Report - Streamflow Protocol

Fees and Rent

Streamflow charges a fee for utilizing the protocol. The fees consist of a fee directly to Streamflow
and a partner/referral fee. The fees are queried via the Streamflow partner oracle program. If no valid
partner is submitted, Streamflow defaults to a 0% partner fee and a 1% fee to Streamflow.

The total fee amount is added to the amount that will be distributed to the recipient and deposited
by the contract creator at the time the contract is created. The fees are not directly transferred to
Streamflow and the partner. Instead, they are distributed proportionally with every unlock, ensuring a
fair and transparent distribution process.

The contract creator has to pay the Solana account rent when creating a new vesting contract for the
metadata PDA, escrow PDA and if not already existing the recipients and fee recipients ATA accounts. If
the contract has finished, the escrow account will be closed, and the remaining rent will be transferred
to the Streamflow treasury. The metadata account will not be closed and no rent will be reclaimed.

Instructions
The contract has nine instructions, which we briefly summarize here for completeness.

Table 1: Instructions with Descriptions

Instruction Category Summary
Create Permissionless Create a new vesting contract
CreateUnchecked Permissionless Create a new vesting contract with relaxed checks on

existing accounts

Topup Creator-Only Increases the amount of tokens to be distributed

Pause Creator-Only Pause the vesting contract (if allowed)

Unpause Creator-Only Unpause the vesting contract

Withdraw Withdraw-Authority Withdraw unlocked tokens to the recipient and transfer
fees

Transfer Transfer-Authority Change the contract recipient

Update Update-Authority Update the unlocked amount per period (Creator-Only),

the automatic withdraw frequency and enable
automatic withdrawals

7/25

Security Report - Streamflow Protocol

Instruction Category Summary

Cancel Cancel-Authority Cancel the vesting contract, transferring unlocked
tokens to the recipient and locked tokens to the creator

Authority Structure

Acrucial part of the design overview is authorities and components running off-chain. These authorities
and components are described in the following.

Upgrade Authority

A program’s upgrade authority allows complete control over its behaviour, signatures, and funds.
Therefore, it should be well protected. The Streamflow team currently uses a three-out-of-five Squads
multisig to govern the upgrade authority, which means no single key can do an upgrade by itself.

Contract Creator

The contract creator can turn on and off different functionalities of the vesting contract during the
contract creation. In the following, we will outline those properties:

« cancelable_by_sender: If set to true, the contract creator can cancel this stream and re-
claim locked tokens. This allows the creator to prevent payout of future tokens, though already
unlocked tokens cannot be held-back.

« transferable_by_sender: The contract creator can transfer this stream to a different recipi-
ent if set to true. All future payouts will go to the new recipient.

« can_topup: If set to true, the contract creator can increase the vested amount in the contract.
This cannot have any bad consequences for the recipient.

+ pausable: If set to true, the contract creator can pause the vesting contract and later unpause it.
This can prevent the recipient from receiving any tokens, but the contract creator cannot receive
them themselves either.

« can_update_rate: If set to true, the contract creator can increase or decrease the unlocked
amount per period.

8/25

Security Report - Streamflow Protocol
Contract Recipient

Depending on the contract specification, the contract receiver also has the ability to perform
certain actions. Those include analogues to the above cancelable_by_recipient and
transferable_by_recipient. Furthermore, the recipient can also Update the automatic
withdrawal frequency or enable automatic withdrawals.

9/25

Security Report - Streamflow Protocol

Findings

This section outlines all of our findings. They are classified into one of five severity levels, detailed in
Appendix C.

All findings are listed in Table 2 and further described in the following sections.

Table 2: Findings

Name Severity
[ND-STR2-L1] Pausing logic can result in unexpected behaviour Low
[ND-STR2-I1] create_account allows for DoS attack Info
[ND-STR2-1I2] Floating point math can lead to minor rounding errors Info
[ND-STR2-I3] Presence of unused but broken utility function Info
[ND-STR2-I4] Missing SPL Token 2022 extension support Info

10/25

Security Report - Streamflow Protocol

ND-STR2-L1 - Pausing logic can result in unexpected behaviour

Severity Impact Affected Component Status

Low Pausing logic can result in unexpected Pause mechanism Resolved
behaviour

Description

Streamflow allows the contract creator to pause the stream if the pausing functionality is enabled
during stream creation. Streamflow treats this as a no-op if the stream gets paused and unpaused
before any unlocks happen. This is intended behaviour, but an edge case was present in the unpause
implementation, which could lead to a delayed start and a cumulated payout in the end.

Assume the contract got paused after the start_time timestamp but before the c1 f f timestamp
and gets unpaused before the c11 f f timestamp. As there were no unlocks yet, this pause should be
treated as a no-op. This was not the case in the previous implementation, as the check for actually
adding the pause time only checked if now > start_time and not forthe cl1ff timestamp.

Location

https://github.com/streamflow-finance/protocol/blob/31d0c6cd543e9f5f417124f2852441718cd02
901/programs/protocol/src/state.rs#L514-542

Relevant Code

pub fn unpause(&mut self, now: u64) -> Result<(), ProgramError> {
let cliff = self.ix.cliff;
let current_pause_length = self.current_pause_len(now)?;

// if stream was paused after start or if pause shifts start_time,
we should also shift end time

if self.current_pause_start >= self.ix.unlock_start() || now >=
self.ix.unlock_start() {
self.end_time.try_add_assign(current_pause_length)?;

}

//increment cumulative
if now > self.ix.start_time {
self.pause_cumulative.try_add_assign(current_pause_length)?;

}

11/25

https://github.com/streamflow-finance/protocol/blob/31d0c6cd543e9f5f417124f2852441718cd02901/programs/protocol/src/state.rs#L514-542
https://github.com/streamflow-finance/protocol/blob/31d0c6cd543e9f5f417124f2852441718cd02901/programs/protocol/src/state.rs#L514-542

Security Report - Streamflow Protocol

self.current_pause_start = 0;

Ok(())

Mitigation Suggestion

We recommend checking that now > self.ix.unlock_start() toincorporate the check fora
cliff.

Remediation

The Streamflow quickly responded to the issue and implemented the recommended mitigation in
commit c2dee4f65aa2a712aedb2decfc1821192c785d23.

12/25

Security Report - Streamflow Protocol

ND-STR2-11 - create_account allows for DoS attack

Severity Impact Affected Component Status

Info The contract creation through Contract Creation Resolved
CreateUnchecked could get interrupted

Description

Inthe CreateUnchecked instruction, Streamflow uses the create_account method to initialize
the escrow PDA. In contrast to the Create instruction, the metadata account already has to be created
and initiated here. Due to an intrinsic of create_account, it will fail if the to-be-created account
already has more than zero lamports of balance. As anyone can transfer lamports to any account, this
allows for a Denial of Service attack if the initial metadata account creation and the stream creation
are in separate transactions.

An attacker would scan for the creation of empty metadata accounts and transfer lamports to the
to-be-created escrow PDA, thereby triggering a failure in CreateUnchecked.

This would prevent new streams from being created with the CreateUnchecked method.

Inthe Createinstruction, this problem does not arise, although create_account is used because
the to-be-created account is derived from the newly created metadata account.

Location

https://github.com/streamflow-finance/protocol/blob/31d0c6cd543e9f5f417124f2852441718cd02
901/programs/protocol/src/create_unchecked.rs#L245-257

Relevant Code

let seeds = [ESCROW_SEED_PREFIX, acc.metadata.key.as_ref(), &[
stream_escrow_bump]];

invoke_signed(
&system_instruction::create_account(
acc.payer.key,
acc.escrow_tokens.key,
tokens_rent,
tokens_struct_size as u64,
acc.token_program.key,

)

13/25

https://github.com/streamflow-finance/protocol/blob/31d0c6cd543e9f5f417124f2852441718cd02901/programs/protocol/src/create_unchecked.rs#L245-257
https://github.com/streamflow-finance/protocol/blob/31d0c6cd543e9f5f417124f2852441718cd02901/programs/protocol/src/create_unchecked.rs#L245-257

Security Report - Streamflow Protocol

&[acc.payer.clone(), acc.escrow_tokens.clone(), acc.system_program.
clone()],
&[&seeds],

)?;
Mitigation Suggestion

A pattern has evolved to mitigate this issue. It checks whether the current account balance is > 0 and, if
so, manually transfers, allocates, and assigns the new owner. An example of this can be found in the
Neon source code.

Remediation

The Streamflow quickly responded to the issue and implemented the modified creation pattern in
commit 0fb65d2e4450e343ad63bc90cd3c091074d01ch1.

14 /25

https://github.com/neonevm/neon-evm/blob/7bd730c1f7e4296473310c02091c88ce6c07364d/evm_loader/program/src/account/program.rs#L61

Security Report - Streamflow Protocol

ND-STR2-12 - Floating point math can lead to minor rounding errors

Severity

Info

Description

Impact Affected Component Status

An unlock might contain slightly more or less Unlock calculation Acknowledged
tokens than mathematically exact

To calculate the amount that is already unlocked for the user to withdraw and the corresponding

fees, Streamflow uses floating point math with a precision factor. As rounding floating numbers in

Rust defaults to the nearest representable value, this might result in a number slightly off from the

mathematically exact result. This could lead to a slightly skewed unlocked amount. As the last unlock

period will withdraw all remaining funds, the user can be assured of receiving the total deposited

amount, and possible rounding errors will be mitigated in the end.

Location

https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1dececl
8c5/programs/protocol/src/utils.rs#L100-108

Relevant Code

/// Given amount and percentage, return the u64 of that percentage.
pub fn calculate_fee_from_amount(amount: u64, percentage: f32) -> u64 {

if percentage <= 0.0 {
return 0

}

let precision_factor: f32 = 1000000.0;

let factor = (percentage / 100.0 * precision_factor) as ul28; //
largest it can get is 1074

(amount as ul28 * factor / precision_factor as ul28) as u64 // this
does not fit if amount

//
itself cannot fit into u64

Mitigation Suggestion

Use fixed point math to calculate the percentages.

15/25

https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1decec18c5/programs/protocol/src/utils.rs#L100-108
https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1decec18c5/programs/protocol/src/utils.rs#L100-108

Security Report - Streamflow Protocol
Remediation

The Streamflow acknowledged this issue and decided to keep the current implementation.

16 /25

Security Report - Streamflow Protocol

ND-STR2-13 - Presence of unused but broken utility function

Severity Impact Affected Component Status
Info None, but future refactors might cause issues Deposit calculation Resolved
Description

There is an unused utility function deposit_gross, which does erroneous calculations. During the
calculation of the netamount from the gross amount, the codecallscalculate_fee_from_amount
twice to calculate the fees included in the gross amount and deduct these fees to get the deposited net
amount. calculate_fee_from_amount assumes that the passed amount is net and therefore
calculates the fees incorrectly which results in an incorrect net amount added to the metadata.

Locations

https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1dececl
8c5/programs/protocol/src/state.rs#L616-619
https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1dececl
8c5/programs/protocol/src/utils.rs#L107

Relevant Code

state.rs

pub fn deposit_gross(&mut self, gross_amount: u64) -> Result<(),
ProgramError> {
let partner_fee_addition =
calculate_fee_from_amount(gross_amount, self.
partner_fee_percent);
let strm_fee_addition =
calculate_fee_from_amount(gross_amount, self.
streamflow_fee_percent);
let net_amount = gross_amount.try_sub(partner_fee_addition)?.
try_sub(strm_fee_addition)?;
self.ix.net_amount_deposited.try_add_assign(net_amount)?;
self.partner_fee_total.try_add_assign(partner_fee_addition)?;
self.streamflow_fee_total.try_add_assign(strm_fee_addition)?;
self.end_time = self.effective_end_time()?;
ok(())
}

utils.rs

17/25

https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1decec18c5/programs/protocol/src/state.rs#L616-619
https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1decec18c5/programs/protocol/src/state.rs#L616-619
https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1decec18c5/programs/protocol/src/utils.rs#L107
https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1decec18c5/programs/protocol/src/utils.rs#L107

Security Report - Streamflow Protocol

pub fn calculate_fee_from_amount(amount: u64, percentage: f32) -> u64 {
if percentage <= 0.0 {
return 0

}

let precision_factor: f32 = 1000000.0;

let factor = (percentage / 100.0 * precision_factor) as ul28;
(amount as ul28 x factor / precision_factor as ul28) as u64

Mitigation Suggestion
Because deposit_grossand try_sync are currently not in use we suggest removing them.
Remediation

Streamflow removed the functions deposit_gross and try_sync_balance from their code-
base.

18/25

Security Report - Streamflow Protocol

ND-STR2-14 - Missing SPL Token 2022 extension support

Severity Impact Affected Component Status
Info Missing SPL Token 2022 extension support Dependency support Resolved
Description

Even though the protocol supports basic SPL Token 2022 mints it doesn’t work with mints that require
extensions for token accounts. The Token2022 program requires the token account size to be big
enough for the extensions to fit, but the Streamflow protocol program only creates PDAs with the
size of a default account (165 bytes) without any room for extensions. Because of this, the call to the
account initialization instruction in Token2022 fails with an InvalidAccountData error, if the mint
requires account extensions.

Location

https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1dececl
8c5/programs/protocol/src/create.rs#L232
https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1dececl
8c5/programs/protocol/src/create_unchecked.rs#L224

Relevant Code

state.rs

pub fn create(pid: &Pubkey, acc: CreateAccounts, mut ix: CreateParams)
-> ProgramResult {
msg! ("Initializing SPL token stream");

let tokens_struct_size = spl_token_2022::state::Account::LEN;

let cluster_rent = Rent::get()?;

let metadata_rent = cluster_rent.minimum_balance(
metadata_struct_size);

let mut tokens_rent = cluster_rent.minimum_balance(
tokens_struct_size);

if acc.recipient_tokens.data_is_empty() {
tokens_rent.try_add_assign(cluster_rent.minimum_balance(

tokens_struct_size))?;

19/25

https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1decec18c5/programs/protocol/src/create.rs#L232
https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1decec18c5/programs/protocol/src/create.rs#L232
https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1decec18c5/programs/protocol/src/create_unchecked.rs#L224
https://github.com/streamflow-finance/protocol/blob/db63597baa4e994dff2c67db55e44d1decec18c5/programs/protocol/src/create_unchecked.rs#L224

Security Report - Streamflow Protocol

let withdraw_fees = metadata.withdraw_fees()?;

if acc.sender.lamports() < metadata_rent.try_add(tokens_rent)?.
try_add(withdraw_fees)? {
msg! ("Error: Insufficient funds in {}'", acc.sender.key);
return Err(ProgramError::InsufficientFunds)

msg! ("Creating stream escrow account");
let seeds = [ESCROW_SEED_PREFIX, acc.metadata.key.as_ref(), &[
stream_escrow_bump]];

create_pda_account_safe(
&acc.system_program,
acc.token_program.key,
&acc.sender,
&acc.escrow_tokens,
&seeds,
tokens_struct_size,

by

msg! ("Initializing stream escrow SPL token account");
invoke (
&spl_token_2022::1instruction::initialize_account(
acc.token_program.key,
acc.escrow_tokens.key,
acc.mint.key,
acc.escrow_tokens.key,

)7,

acc.token_program.clone(),
acc.escrow_tokens.clone(),
acc.mint.clone(),
acc.escrow_tokens.clone(), // owner
acc.rent.clone(),

1,

)75
Ok(())
}
Mitigation Suggestion

We suggest using the same logic as the AssociatedTokenAccount program by calling the Token2022
programs GetAccountDataS1 ze instruction to retrieve the required size for the token account.
https://github.com/solana-labs/solana-program-library/blob/0ab6ed7869679c0f5e2a72068e7a4e0

20/25

https://github.com/solana-labs/solana-program-library/blob/0ab6ed7869679c0f5e2a72068e7a4e0591076d1f/associated-token-account/program/src/tools/account.rs#L77-L100
https://github.com/solana-labs/solana-program-library/blob/0ab6ed7869679c0f5e2a72068e7a4e0591076d1f/associated-token-account/program/src/tools/account.rs#L77-L100

Security Report - Streamflow Protocol

591076d1f/associated-token-account/program/src/tools/account.rs#L77-L100

Because certain extensions like the transfer fee open up other vulnerabilities and logic issues for the
streamflow protocol we suggest implementing an allowlist which extensions the program supports
and blocks mints that require extensions that aren’t explicitly allowed.
Example code to unpack a mint and retrieve the enabled extensions:

let mint = spl_token_2022::extension::PodStateWithExtensions::<

spl_token_2022::pod: :PodMint>: :unpack(&account_info.data.borrow())?;
let extensions = mint.get_extension_types()?;

Remediation

The streamflow team added support for extensions in commit
4248294ef9dac378632ac32dbe2786828db2d91b.
As suggested they implemented an allowlist and allowed the following extensions:

+ TransferFeeConfig

+ MintCloseAuthority

+ ConfidentialTransferMint
+ DefaultAccountState

« NonTransferable

+ InterestBearingConfig

+ PermanentDelegate

+ ConfidentialTransferFeeConfig
+ MetadataPointer

+ TokenMetadata

« GroupPointer

» TokenGroup

« GroupMemberPointer

« TokenGroupMember

21/25

https://github.com/solana-labs/solana-program-library/blob/0ab6ed7869679c0f5e2a72068e7a4e0591076d1f/associated-token-account/program/src/tools/account.rs#L77-L100
https://github.com/solana-labs/solana-program-library/blob/0ab6ed7869679c0f5e2a72068e7a4e0591076d1f/associated-token-account/program/src/tools/account.rs#L77-L100
https://github.com/solana-labs/solana-program-library/blob/0ab6ed7869679c0f5e2a72068e7a4e0591076d1f/associated-token-account/program/src/tools/account.rs#L77-L100

Security Report - Streamflow Protocol

Methodology

Neodyme prides itself on not being a checklist auditor. We adapt our approach to each audit, investing
considerable time into understanding the program upfront and exploring its expected behaviour, edge
cases, invariants, and ways in which the latter could be violated. We use our uniquely deep knowledge
of Solana internals and our years-long experience in auditing Solana programs to even find bugs that
others miss. We often extend our audit to cover off-chain components in order to see how users could
be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list below.

+ Rule out common classes of Solana contract vulnerabilities, such as:

- Missing ownership checks

- Missing signer checks

- Signed invocation of unverified programs
- Solana account confusions

- Redeployment with cross-instance confusion
- Missing freeze authority checks

- Insufficient SPL account verification

- Missing rent exemption assertion

- Casting truncation

- Arithmetic over- or underflows

- Numerical precision errors

« Check for unsafe designs which might lead to common vulnerabilities being introduced in the
future

+ Check for any other, as-of-yet unknown classes of vulnerabilities arising from the structure of
the Solana blockchain

+ Ensure that the contract logic correctly implements the project specifications

« Examine the code in detail for contract-specific low-level vulnerabilities

+ Rule out denial of service attacks

+ Rule out economic attacks

« Check forinstructions that allow front-running or sandwiching attacks

+ Check for rug pull mechanisms or hidden backdoors

22 /25

Security Report - Streamflow Protocol

Vulnerability Severity Rating

Critical Vulnerabilities that will likely cause loss of funds. An attacker can trigger them with little or
no preparation, or they are expected to happen accidentally. Effects are difficult to undo after
they are detected.

High Bugs that can be used to set up loss of funds in a more limited capacity, or to render the contract
unusable.

Medium Bugsthat do not cause direct loss of funds but that may lead to other exploitable mechanisms,
or that could be exploited to render the contract partially unusable.

Low Bugs that do not have a significant immediate impact and could be fixed easily after detection.

Info Bugs or inconsistencies that have little to no security impact.

23/25

Security Report - Streamflow Protocol

About Neodyme

Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully understand
every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe we have the most qualified auditors for Solana programs in our company. We’ve
also found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

Our team met as participants in hacking competitions called CTFs. There, we competed and collabo-
rated while finding vulnerabilities, breaking encryption, reverse engineering complicated algorithms,
and much more. Through the years, many of our team members have won national and international
hacking competitions and keep ranking highly among some of the hardest CTF events worldwide. In
2020, some of our members started experimenting with validators and became active members of the
early Solana community. With the prospect of an interesting technical challenge and bug bounties,
they quickly encouraged others from our CTF team to look for security issues in Solana. The result was
so successful that after reporting several bugs, in 2021, the Solana Foundation contracted us for source
code auditing. As a result, Neodyme was born.

24 /25

Security Report - Streamflow Protocol

Neodyme AG

Dirnismaning 55

Halle 13

85748 Garching

E-Mail: contact@neodyme.io

https://neodyme.io

25/25

mailto:contact@neodyme.io
https://neodyme.io

	Executive Summary
	Introduction
	Findings Summary

	Scope
	Project Overview
	Functionality
	On-Chain Data and Accounts
	Fees and Rent
	Instructions
	Authority Structure
	Upgrade Authority
	Contract Creator
	Contract Recipient

	Findings
	 ND-STR2-L1 [Low; Resolved] Pausing logic can result in unexpected behaviour
	 ND-STR2-I1 [Info; Resolved] create_account allows for DoS attack
	 ND-STR2-I2 [Info; Acknowledged] Floating point math can lead to minor rounding errors
	 ND-STR2-I3 [Info; Resolved] Presence of unused but broken utility function
	 ND-STR2-I4 [Info; Resolved] Missing SPL Token 2022 extension support

	Methodology
	Vulnerability Severity Rating
	About Neodyme

