Security Audit - stabble AMM

conducted by Neodyme AG

Lead Auditor: Jasper Slusallek

Second Auditor: Mathias Scherer

Administrative Lead: Thomas Lambertz

Finalized: October 10, 2024
Last Updated: November 14,2024

Security Audit - stabble AMM

Table of Contents

1 Executive Summary

2 Introduction
Summaryof Findings e e

3 Scope

4 Project Overview
Functionality e e e e
On-ChainDataand Accounts i i i i i e e
Relationshipof PoolsandVaults,
INStructions L e e e e e e e e e e
Authority Structure e e e e e e e

5 Findings
[ND-STB-MD-01] Token2022 Fees can lead to accountingerror
[ND-STB-L0-01] Transfer Hooks prevent tokentransfers
[ND-STB-IN-01] Beneficiary fees can end up in unexpected accounts
[ND-STB-IN-02] Invariant field is never updated but always printedinCLI

Appendices
A About Neodyme

B Methodology
Select Common Vulnerabilities

C Vulnerability Severity Rating

o 00 N oo &

10

12
13
15
17
18

20

21
21

23

2/24

Security Audit - stabble AMM
Executive Summary

Neodyme audited stabble’s on-chain stable-swap, weighted-swap, and vault programs in September
of 2024.

Two senior researchers from Neodyme, Jasper Slusallek and Mathias Scherer, conducted indepen-
dent full audits of the contract. The scope of this audit included the implementation security of these
programs as well as the math libraries written by stabble to implement their business logic.

The auditors found that stabble’s programs comprised a clean design and excellent code quality.
According to Neodyme’s Rating Classification, 1 issue above low severity was found.

The number of findings identified throughout the audit, grouped by severity, can be seen in Figure 1.

Critical 0
> High 0
g Medium [1
(]
(V2]
Informational 2

Figure 1: Overview of Findings

The auditors reported all findings to the stabble developers, who addressed them promptly. The
security fixes were verified for completeness by Neodyme.

In addition to these findings, Neodyme delivered the stabble team a short list of nit-picks and addi-
tional notes that are not part of this report.

3724

Security Audit - stabble AMM

Introduction

During September of 2024, stabble engaged Neodyme to do a detailed security analysis of their on-
chain AMM.

The audit focused on the contract’s technical security, as well as any economical risks. In the following
sections, we discuss the protocol’s functionality and security framework, as well as presenting our

findings.

Neodyme would like to emphasize the high quality of stabble’s code. Though some code duplication
is apparent, the codebase is generally lean and well-structured, with the logic relying on well-tested
routines. Naming schemes are clear, and the overall architecture of the program is clean and coherent.

The contract’s source code has no unnecessary dependencies, relying mainly on the well-established

Anchor framework.

Summary of Findings

During the audit 2 security-relevant findings were identified. All found issues were quickly remedi-

ated. In total, the audit revealed:

0 critical ¢ 0 high-severity * 1 medium-severity ¢ 1 low-severity * 2 informational

issues.

47724

https://stabble.org/
https://neodyme.io

Security Audit - stabble AMM
Scope

The contract audit’s scope comprised of three major components:

+ Primarily, the Implementation security of the contract’s source code
+ Additionally, security of the overall design
+ Additionally, resilience against economical attacks

Neodyme considered the source code of the on-chain programs in-scope for this audit. Specifically,
this comprises:

+ The code of the stable-swap, weighted-swap and vault contracts, located in the programs folder
of the repository at https://github.com/stabbleorg/amm-v1, and

« the core mathematical functionality used by the contracts, located in the libraries folder of
the repository at https://github.com/stabbleorg/amm-sdk.

Third-party dependencies are not in scope. It should be noted that stabble only relies on the Anchor
library, the solana-program and the bn and math libraries, all of which are well-established.

During the audit, minor changes and fixes were made by stabble, which the auditors also reviewed
in-depth.

Relevant source code revisions are as follows. For the amm-v1 repository:
+ 12c18ed3f2d8873cf3ela89elcfad2334a3ca367 - Start of the audit
+ fc465ade3c0e342bed04876723cc7662660b462d - Last reviewed revision

For the amm-sdk repository:
» be385d25652325d365de7e0b75a9d7d32b7bae59 - Start of the audit
» f15d379afe801dec49e214e88eel14e01493c5a06 - Last reviewed revision

5724

https://github.com/stabbleorg/amm-v1
https://github.com/stabbleorg/amm-sdk

Security Audit - stabble AMM
Project Overview

This section briefly outlines stabble’s functionality, design, and architecture, followed by a detailed
discussion of all related authorities.

Functionality

stabble’s contracts implement AMMs for swaps with advanced liquidity invariants. They have two
types of pools:

Firstly, Weighted pools, which hold a multitude of assets, each with a different weight. Unlike the
traditional x*y=k formula for two-asset AMMs, they ensure that when discounting swap fees, the
product of all the pool’s token balances, each taken to the power of its weight, should not change
during swaps. The weights must sum to 1. We will call this product the “weighted invariant” for the
rest of this document.

Their input and output calculations closely follow Balancer’s description of their Weighted Math
formulas.

Secondly, Stable pools, which hold any number of tokens that have the same peg - for example,
tokensthatareall pegged to USD, or a collection of liquid SOL staking tokens. These pools concentrate
their liquidity around a 1:1 price point, improving swap prices under the assumption that none of the
tokens depeg significantly.

The stable-math equationis A-n" - >z, + D=A-D-n" + ML&;, where D is the invariant, n is
the number of tokens, x; is the balance of token i and A is a constant amplification coefficient chosen
by the pool. In this formula, D must stay constant across swaps (discounting fees). Note that the
equationisa polynomialin D.In orderto calculate D, stabble uses a Newton-Raphson approximation

with 255 iterations, much like Balancer’s implementation.

For providing liquidity, in both types of pools, users can deposit any number of tokens in any
distribution they like, and receive LP tokens proportional to how much they have increased the
pool’s invariant - that is, the amount of output tokens received is determined by LP_token supply *
(invariant after deposit/invariant before deposit - 1).Some feesare applied forunbalanced
deposits, e.g. for deposits that only deposit one token.

When withdrawing, users burn LP tokens and can choose between receiving a proportional share of
each token held by the pool, or receiving a single token back. In the latter case, the new invariant
is calculated via invariant * (LP token supply - LP to burn) / LP token supply, and subse-
quently the output amount is calculated via the invariant equation where all other token balances
stay constant.

Stable’s contracts are split into a contract for stable swaps, a contract for weighted swaps, and a
simple vault contract that holds all assets.

6/24

https://docs.balancer.fi/reference/math/weighted-math.html
https://docs.balancer.fi/reference/math/weighted-math.html

Security Audit - stabble AMM

The implementation is split into the amm-v1 repository, which holds the anchor implementation of
the instructions and general business logic, and the amm-sdk repository, which holds inits libraries
folder the core mathematical functions that are called by the instructions for things like calculating
the invariant or calculating output amounts.

On-Chain Data and Accounts

The program stores fairly little data on-chain, mostly comprised of owner information and pool
parameters.

Vault Contract

The vault contract is minimal in function. It has a single account for each vault that stores:

« The vault’'s admin, who can change the vault’s parameters, assign a new admin, or pause/
unpause the vault. In the stable swap contract, any of its pools that use this vault also allow the
vault’s admin to change the pool’s amplification factor parameters.

+ An optional pending admin, which is set to an address only if the current admin is transferring
their role

« The authority who is able to withdraw from the vault

+ The vault’s beneficiary, who gets a portion of the pool’s fees

« The beneficiary fee, which defines said share

+ A boolean indicating whether the vault is currently active or paused

+ Relevant bump seeds

The beneficiary fee is enforced via the swap contracts, not the vault contract itself.

The vault contract has a single relevant PDA for each vault, the vault authority. It is derived via the
seeds [b"vault_authority", vault.key()] andisthe authority for the funds that the contract holds.

Said funds are held in ATAs of the vault authority. This is enforced only in the pool’s deposit functions
- the vault itself does not verify the accounts, and withdrawals from the pool do not verify where the
funds come from.

Stable Swap Contract

The stable swap contract has a single account for each pool that stores:

+ The pool’s owner, who can assign a new owner, change configuration parameters (save for the
amplification factor parameters, which is controlled by the vault’s admin) and pause the pool

+ An optional pending owner, which is set to an address only if the current owner is transferring
their role

» The pool’s vault, where its assets are stored. This is the address of the account storing the vault
configuration, as described in the section on the vault contract above.

+ The mint of the LP token

7/24

Security Audit - stabble AMM

+ Parameters of the amplification factor. The contract includes functionality for gradually chang-
ing the factor over time. The parameters include a start and end timestamp of the change, as
well as the starting and ending point (“target”) of the change.

+ The fee charged on swaps

+ Alist of supported tokens in the pool. For each token, the contract stores:

» The token’s mint and decimals

» Scaling parameters that specify a scaling factor that is applied to any balances

» The pool’s total balance of that token. This is an internal tracker which is never synced
with the funds held in the vault but updated for swaps and LP deposits or withdrawals

+ A boolean indicating whether the pool is currently active or paused

+ Relevant bump seeds

Each pool has a pool authority associated with it. This is a PDA derived via [b"pool authority",
pool.key()] and is the mint authority of the LP token.

Additionally, each pool has a withdraw authority PDA seeded via [b"withdraw authority",
vault.key()]

Weighted Swap Contract

Similarly, the weighted swap contract has a single account for each pool that stores:
+ the pool’s owner, a pending owner, the pool’s vault, the mint of the LP token, the swap fee, a
boolean indicating pause status and bump seeds, all just as in the stable swap contract
+ Alist of supported tokens in the pool like in the stable swap contract. However, in addition to
the metadata stored by the stable swap contract, a field for the token’s weight is added.
+ The pool’s invariant, as recorded during the first liquidity provision

Again, each pool has a PDA associated with it which is the pool authority. It works the same and is
seeded the same as in the stable swap contract.

Relationship of Pools and Vaults

Unintuitively, vaults are not specific to a pool. A vault can act as the funds storage for more than one
pool, and indeed any new (permissionless created) pool can use any existing vault as its pool.vault.
The funds will be mixed with those of the other pools using the vault.

We could not find a way to withdraw more funds out of a pool than were deposited in even as admin,
hence there does not appear to be a way to use this unusual pool-vault relationship to extract funds
from other pools. However, we would advise clarifying this in user documentation to avoid confusion.

Instructions

For completeness, we briefly summarize the instructions of the contracts here.

8/ 24

Security Audit - stabble AMM

Vault Contract

Instruction

Initialize

Config Instructions

Category

Permissionless

Admin Only

Summary

Initializes a vault by initializing the vault account
and populating it with user-provided data, verify-
ing only the beneficiary fee

Changes the pool’s configuration data, including
the active bit, the beneficiary and the beneficiary
fee. Can also change the admin, in which case
the new admin has to accept in a separate config
instruction.

Withdraw Authority Only ~ Withdraws funds from a token account where

the vault authority is the token authority. Takes
two amounts, one intended for an instruction-
provided user account and one intended for the
vault’s beneficiary account.

Withdraw Authority Only Same as Withdraw, but supports token22.

Withdraw
Withdraw V2

Stable Swap Contract
Instruction Category
Initialize Permissionless
Shutdown Permissionless
Deposit Permissionless
Withdraw Liquidity Provider
Swap Permissionless
SwapV2 Permissionless

Change AMP Factor

Change Swap Fee
Pause

Unpause

Vault Admin

Owner
Owner

Owner

Summary

Initializes a new pool with the given token configu-
ration, LP mint, user-provided pool configuration. It
checks that the LP mint has no other authorities than
the pool itself.

Closes the pool if all token balances are 0.
Deposits tokens in exchange for LP tokens.

Withdraws liquidity from the pool for the given amount
of LP Tokens.

Swaps one token for the other. Supports only Tokenkeg
tokens

Swaps one token for the other. Supports Tokenkeg and
Token2022 tokens.

Activate the amplification factor change to the user-
defined value and time range.

Changes the swap fee.
Pauses the pool.

Unpauses the pool.

9/24

Security Audit - stabble AMM

Instruction
Transfer Owner

Accept Owner

Reject Owner

Category
Owner

Pending Owner

Pending Owner

Weighted Swap Contract
Instruction Category
Initialize Permissionless

Shutdown
Deposit
Withdraw

Swap

SwapV2

Change Swap Fee
Pause

Unpause
Transfer Owner

Accept Owner

Reject Owner

Permissionless
Permissionless

Liquidity Provider

Permissionless

Permissionless

Owner
Owner
Owner
Owner

Pending Owner

Pending Owner

Authority Structure

Upgrade Authority

Summary
Sets a new pending_owner for the pool.

Accepts the owner transfer. Resets the pending owner
and sets the new owner.

the transfer and resets the

pending owner value.

Rejects owner

Summary

Initializes a pool by initializing the pool account and pop-
ulating it with user-provided data.

Closes the pool if all token balances are 0.
Deposits tokens in exchange for LP tokens.

Withdraws liquidity from the pool for the given amount of
LP Tokens.

Swaps one token for the other. Supports only Tokenkeg
tokens

Swaps one token for the other. Supports Tokenkeg and
Token2022 tokens.

Changes the swap fee.

Pauses the pool.

Unpauses the pool.

Sets a new pending_owner for the pool.

Accepts the owner transfer. Resets the pending owner
and sets the new owner.

Rejects the owner transfer and resets the pending owner
value.

The upgrade authority has complete control over the contract’s funds, as they can arbitrarily change

the behaviour of the contract.

The upgrade authority is secured by a 2/3 multisig which is managed by the team.

10/24

Security Audit - stabble AMM

Pool Owner

The pool owner has limited control over the parameters of the pool they control. They can change
swap fees (though it is constrained to stay within a range of 0.0001% - 1% for stable swap and 0.01%
- 2.5% for weighted swap), as well as being able to pause and unpause the pool.

Vault Admin

The vault admin has control over the vault parameters. This is limited to the identity of the vault
beneficiary, the beneficiary fee percentage and to (un)pausing the protocol.

However, importantly, for stable swap pools that use the vault, they can also initiate an amplification
factor change. This means they can extract funds from the pool, simply by letting the pool oscillate
between being constant-product and constant-sum. By swapping almost all tokens in the constant-
sum scenario, switching to constant-product and then swapping until the pool is balanced again, they
can reduce the overall number of tokens in the pool.

As a (simplified) example, consider a two-token pool with 5 tokens of type A and B. In this example
we ignore restrictions on the amplification factor set out by the contract, however the same principle
applies. Initially, the admin sets the amplification factor as high as possible, such that the pool
is (nearly) constant-sum. By swapping 4 type A tokens into type B, the pool will now have (approxi-
mately) 9 tokens of type Aand 1 of type B. The admin now immediately sets Ato 0 such thatitis (nearly)
a constant-product AMM. They do this with a 1 second ramp. They can now trade 2 tokens of type B
into 6 tokens of type A, leaving the pool with 3 tokens of type A and 3 tokens of type B. The admin has
profited by 2 tokens of type A and 2 tokens of type B.

The vault admin is secured by the same multisig as the upgrade authority. The team plans to transfer
this authority to a governance system later on.

11724

Security Audit - stabble AMM
Findings

This section outlines all of our findings. They are classified into one of five severity levels, detailed in
Appendix C. In addition to these findings, Neodyme delivered the stabble team a list of nit-picks and
additional notes which are not part of this report.

All findings are listed in Table 4 and further described in the following sections.

Identifier Name Severity Status
ND-STB- Token2022 Fees can lead to accounting Resolved
ND-STB- Transfer Hooks prevent token transfers Resolved
LO-01

ND-STB- Beneficiary fees can end up in unexpected Resolved
IN-01 accounts

ND-STB- Invariant field is never updated but always Acknowledged
IN-02 printed in CLI

Table 4: Findings

127724

Security Audit - stabble AMM

[ND-STB-MD-01] Token2022 Fees can lead to accounting error

Severity Impact Affected Component Status
m Accounting Error ~ Stable Swap, Weighted Swap Resolved

Description

We found that during deposits and swaps with token2022 mints, it is not checked if the mints have

transfer fees enabled. This can lead to accounting problems because the number of tokens ending

up in the pool does not correspond to the amounts the pool is thinking it holds. This leads to the

theoretical amount (tracked by the pool account) being lower and lower than the actual amount

(tracked by the vault token account) over time.

Relevant Code

1 impl<'info> Deposit<'info> { deposit.rs, lines 160-204

2 fn transfer to vault(

3 &mut self,

4 amount: u64,

5 token index: usize,

6 user account: &AccountInfo<'info>,

7 vault account: &AccountInfo<'info>,

8 mint: &AccountInfo<'info>,

9) -> Result<u64> {

10 let amount _in = self.pool.calc rounded amount(amount,
token index).unwrap();

11 let balance in = self.pool.calc wrapped amount(amount in,
token index).unwrap();

12 // add token balances

13 self.pool.tokens[token index].balance += balance in;

14

15 let token program = if mint.owner.key() == Token::id() {

16 self.token program.to account info()

17 } else {

18 self.token program 2022.to account info()

19 };

20

21 // check associated token account for vault

22 let expected vault account key =
associated token::get associated token address with program id(

23 self.vault authority.key,

24 mint.key,

25 token_program.key,

26)

27 assert eq!(expected vault account key, vault account.key());

13724

https://github.com/stabbleorg/amm-v1/-/blob/b43eb899418e324a049355c21a91db452f33c85f/programs/stable-swap/src/instructions/deposit.rs#L160-204
https://github.com/stabbleorg/amm-v1/-/blob/b43eb899418e324a049355c21a91db452f33c85f/programs/stable-swap/src/instructions/deposit.rs#L160-204
https://github.com/stabbleorg/amm-v1/-/blob/b43eb899418e324a049355c21a91db452f33c85f/programs/stable-swap/src/instructions/deposit.rs#L160-204

Security Audit - stabble AMM

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Resolution

transfer checked(
CpiContext: :new(
token program.to _account info(),
TransferChecked {
from: user _account.to account info(),
mint: mint.to account info(),
to: vault account.to account info(),
authority: self.user.to account info(),
}
)t
amount in,
self.pool.tokens[token index].decimals,

)7?;

Ok(balance in)

In commit d1279b2a009a4dd817cde299977d9f3d70f64e7b, the stabble team added logic to deal with
the case of token fees and correctly incorporate them in transfer amounts.

Neodyme flagged a newly introduced incorrect behaviour related to double-charging of fees, which
was subsequently fixed in a4adbl1414fa7bf350ee954f95bdea0e645683992. The final fix was again
verified by Neodyme.

14724

Security Audit - stabble AMM

[ND-STB-L0-01] Transfer Hooks prevent token transfers

Severity Impact Affected Component Status

m DOS Stable Swap, Weighted Swap Resolved

Description

We found that the current implementation doesn’t prevent mints with the TransferHook extension

from being used in pools, while the program transfer doesn’t add the additional account necessary

for the hooks to work. Because transfer hooks can be enabled and disabled by the TransferHook

authority at will, a pool can be used for some time and stop working for the token that just enabled

the TransferHook. This impacts all locations where tokens are transferred.

Relevant Code

1 impl<'info> Deposit<'info> { deposit.rs, lines 161-203

2 fn transfer to vault(

3 &mut self,

4 amount: u64,

5 token index: usize,

6 user account: &AccountInfo<'info>,

7 vault account: &AccountInfo<'info>,

8 mint: &AccountInfo<'info>,

9) -> Result<u64> {

10 let amount _in = self.pool.calc rounded amount(amount,
token index).unwrap();

11 let balance in = self.pool.calc wrapped amount(amount in,
token index).unwrap();

12 // add token balances

13 self.pool.tokens[token index].balance += balance in;

14

15 let token program = if mint.owner.key() == Token::id() {

16 self.token program.to account info()

17 } else {

18 self.token program 2022.to account info()

19 };

20

21 // check associated token account for vault

22 let expected vault account key =
associated token::get associated token address with program id(

23 self.vault authority.key,

24 mint.key,

25 token_program.key,

26)

27 assert eq!(expected vault account key, vault account.key());

15724

https://github.com/stabbleorg/amm-v1/-/blob/b43eb899418e324a049355c21a91db452f33c85f/programs/stable-swap/src/instructions/
https://github.com/stabbleorg/amm-v1/-/blob/b43eb899418e324a049355c21a91db452f33c85f/programs/stable-swap/src/instructions/
https://github.com/stabbleorg/amm-v1/-/blob/b43eb899418e324a049355c21a91db452f33c85f/programs/stable-swap/src/instructions/

Security Audit - stabble AMM

28
29 transfer checked(
30 CpiContext: :new(
31 token program.to _account info(),
32 TransferChecked {
33 from: user _account.to account info(),
34 mint: mint.to account info(),
35 to: vault account.to account info(),
36 authority: self.user.to account info(),
37 },
38 Do
39 amount in,
40 self.pool.tokens[token index].decimals,
41)?;
42
43 Ok(balance in)
L }
45 %}
Resolution

The stabble team added a whitelist of tokens which can become part of the pool in commit
d1279b2a009a4dd817cde299977d9f3d70f64e7b. Neodyme verified the changes.

16724

Security Audit - stabble AMM

[ND-STB-IN-01] Beneficiary fees can end up in unexpected accounts

Severity Impact Affected Component Status

Beneficiary trolling Beneficiary Fee Disbursement Resolved

Description

Swap instructions of both stable and weighted pools give a cut of the fees to the vault beneficiary.
However, the token account to which the funds are sent is only checked to belong to the vault
beneficiary, not to be the “expected” token account. Anyone can create a token account owned by the
beneficiary and transact their swaps such that the fee cut is deposited into this wallet. The beneficiary
will still have access to the funds, but they will have to go hunting for token accounts owned by them
to withdraw them.

This behaviour exists in both the Withdraw and Withdraw2 instructions of the vault contract.

Relevant Code

77 ... withdraw.rs, lines 12-30
2 if beneficiary amount > 0 {
3 let beneficiary token account = ctx.accounts.beneficiary token.as ref().
unwrap();
4 assert _eq!(beneficiary token account.owner, ctx.accounts.vault.beneficiary);
5 transfer checked(
6 CpiContext: :new(
7 ctx.accounts.token program.to account info(),
8 TransferChecked {
9 from: ctx.accounts.vault token.to account info(),
10 mint: ctx.accounts.mint.to account info(),
11 to: beneficiary token account.to account info(),
12 authority: ctx.accounts.vault authority.to account info(),
13 },
14)
15 .with signer(&[signer_seed]),
16 beneficiary amount,
17 ctx.accounts.mint.decimals,
18)?;
19 }
Resolution

The stabble team introduced a fix with commit fc8adelf5aa245aa64ba42d5ad1600ff47del0chb,
adding the necessary constraint.

17724

Security Audit - stabble AMM

[ND-STB-IN-02] Invariant field is never updated but always printed
in CLI

Severity Impact Affected Component Status
Faulty Tracking Weighted Swap Acknowledged

Description

In weighted swaps, pool.invariant is only set during the initial liquidity deposit. However, the pool’s
mathematical invariant changes as more deposits and withdrawals are done. These changes are not
reflected in the pool.invariant field.

Note that this field is not used otherwise in the on-chain contract. However, it is printed via
console.log("Invariant:", pool.invariant);inthe CLIforeveryswap. This may confuse CLIusers.

Relevant Code
1 /7 LP amount deposit.rs, lines 25-112
2 let amount out = if ctx.accounts.mint.supply == 0 {
3
4 7 o
5
6 // initial liquidity
7 let invariant = weighted math::calc_invariant(
8 /! ...
9)
10 .unwrap() ;
11
12 ctx.accounts.pool.invariant = invariant * num_tokens as u64;
13 ctx.accounts.pool.invariant
14 } else {
15 // do_join
16 if num_tokens == 1 {
17 /] ...
18
19 weighted math::calc _pool token out given exact token in(
20 1) cc-
21) .unwrap()
22
23 // NO update of pool.invariant
24
25 } else {
26 weighted math::calc pool token out given exact tokens in(
27 // ...
28) .unwrap()

18724

Security Audit - stabble AMM

29

30 // NO update of pool.invariant
31

32 }

33}

Resolution

The stabble team acknowledged the finding but state that the CLI will be used internally only and that
the invariant is stored to see the initial invariant value.

19724

Security Audit - stabble AMM
About Neodyme

Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully under-
stand every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competi-
tions, called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption,
reverse engineering complicated algorithms, and much more. Through the years, many of our team
members have won national and international hacking competitions, and keep ranking highly among
some of the hardest CTF events worldwide. In 2020, some of our members started experimenting
with validators and became active members in the early Solana community. With the prospect of an
interesting technical challenge and bug bounties, they quickly encouraged others from our CTF team
to look for security issues in Solana. The result was so successful that after reporting several bugs, in
2021, the Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

20/ 724

Security Audit - stabble AMM
Methodology

We are not checklist auditors.

In fact, we pride ourselves on that. We adapt our approach to each audit, investing considerable time
into understanding the program upfront and exploring its expected behavior, edge cases, invariants,
and ways in which the latter could be violated.

We use our uniquely deep knowledge of Solana internals, and our years-long experience in auditing
Solana programs to find bugs that others miss. We often extend our audit to cover off-chain compo-
nentsin order to see how users could be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list here.

Select Common Vulnerabilities

Our most common findings are still specific to Solana itself. Among these are vulnerabilities such as
the ones listed below:

« Insufficient validation, such as:
» Missing ownership checks
» Missing signer checks
» Signed invocation of unverified programs
» Account confusions
» Missing freeze authority checks
» Insufficient SPL account verification
» Dangerous user-controlled bumps
» Insufficient Anchor account linkage
+ Account reinitialization vulnerabilities
+ Account creation DoS
+ Redeployment with cross-instance confusion
+ Missing rent exemption assertion
« Casting truncation
+ Arithmetic over- or underflows
» Numerical precision and rounding errors
+ Anchor pitfalls, such as accounts not being reloaded
» Non-unique seeds
+ Issues arising from CPI recursion
+ Log truncation vulnerabilities
+ Vulnerabilities specific to integration of Token Extensions, for example unexpected external
token hook calls

217724

Security Audit - stabble AMM

Apart from such Solana-specific findings, some of the most common vulnerabilities relate to the
general logical structure of the contract. Specifically, such findings may be:

+ Errorsin business logic

« Mismatches between contract logic and project specifications

+ General denial-of-service attacks

+ Sybil attacks

+ Incorrect usage of on-chain randomness

+ Contract-specific low-level vulnerabilities, such as incorrect account memory management
+ Vulnerability to economic attacks

+ Allowing front-running or sandwiching attacks

Miscellaneous other findings are also routinely checked for, among them:
+ Unsafe design decisions that might lead to vulnerabilities being introduced in the future
» Additionally, any findings related to code consistency and cleanliness
+ Rug pull mechanisms or hidden backdoors

Often, we also examine the authority structure of a contract, investigating their security as well as the
impact on contract operations should they be compromised.

Over the years, we have found hundreds of high and critical severity findings, many of which are highly
nontrivial and do not fall into the strict categories above. This is why our approach has always gone
way beyond simply checking for common vulnerabilities. We believe that the only way to truly secure
a programis a deep and tailored exploration that covers all aspects of a program, from small low-level
bugs to complex logical vulnerabilities.

227724

Security Audit - stabble AMM
Vulnerability Severity Rating

We use the following guideline to classify the severity of vulnerabilities. Note that we assess each
vulnerability on an individual basis and may deviate from these guidelines in cases where it is well-
founded. In such cases, we always provide an explanation.

Severity Description

CRITICAL Vulnerabilities that will likely cause loss of funds. An attacker can trigger them
with little or no preparation, or they are expected to happen accidentally.
Effects are difficult to undo after they are detected.

Bugs that can be used to set up loss of funds in a more limited capacity, or to
render the contract unusable.

Bugs that do not cause direct loss of funds but that may lead to other
exploitable mechanisms, or that could be exploited to render the contract
partially unusable.

Bugs that do not have a significant immediate impact and could be fixed easily
after detection.

Bugs or inconsistencies that have little to no security impact, but are still
noteworthy.

Additionally, we often provide the client with a list of nit-picks, i.e. findings whose severity lies below
Informational. In general, these findings are not part of the report.

237724

Security Audit - stabble AMM

Neodyme AG

Dirnismaning 55
Halle 13

85748 Garching
Germany

E-Mail: contact@neodyme.io

https://neodyme.io

247724

mailto:contact@neodyme.io
https://neodyme.io

	Executive Summary
	Introduction
	Summary of Findings

	Scope
	Project Overview
	Functionality
	On-Chain Data and Accounts
	Vault Contract
	Stable Swap Contract
	Weighted Swap Contract

	Relationship of Pools and Vaults
	Instructions
	Vault Contract
	Stable Swap Contract
	Weighted Swap Contract

	Authority Structure
	Upgrade Authority
	Pool Owner
	Vault Admin

	Findings
	[ND-STB-MD-01] Token2022 Fees can lead to accounting error
	Description
	Relevant Code
	Resolution

	[ND-STB-LO-01] Transfer Hooks prevent token transfers
	Description
	Relevant Code
	Resolution

	[ND-STB-IN-01] Beneficiary fees can end up in unexpected accounts
	Description
	Relevant Code
	Resolution

	[ND-STB-IN-02] Invariant field is never updated but always printed in CLI
	Description
	Relevant Code
	Resolution

	About Neodyme
	Methodology
	Select Common Vulnerabilities

	Vulnerability Severity Rating

