
Security Review - Sendit Lending Protocol

conducted by Neodyme AG

Lead Auditor: Sebastian Fritsch

Second Auditor: Nico Gründel

Third Auditor: Benjamin Walny

Fourth Auditor: Tobias Bucher

Administrative Lead: Jasper Slussalek

December 08, 2025

Security Review - Sendit Lending Protocol

Table of Contents
1 Executive Summary 3

Introduction 42
Summary of Findings . 4

3 Scope 5

Project Overview 6
Functionality . 6

4

Instructions . 7

Findings 9
[ND-SDIT-CR-01] RedeemReserveCollateral does not check incentive accounts 10
[ND-SDIT-MD-01] LiquidationMarks can be DoSed . 12
[ND-SDIT-MD-02] Vault incentive account can be DoSed . 13
[ND-SDIT-LO-01] DepositReserveLiquidity can be DoSed 14
[ND-SDIT-LO-02] InitReserve is permissionless . 15
[ND-SDIT-LO-03] InitReserve: Fee owner constraint can be bypassed 16
[ND-SDIT-LO-04] Incorrect incentive calculation . 17
[ND-SDIT-LO-05] WithdrawWithMarket: Flooring of transferred liquidity can fail 18
[ND-SDIT-IN-01] DepositReserveLiquidity: No address check on user_incentive_info . 19
[ND-SDIT-IN-02] Closed LiquidationMarks can be revived 20

5

[ND-SDIT-IN-03] DeployToMarket: Wrong token program 21

Appendices

A About Neodyme 22

Methodology 23B
Select Common Vulnerabilities . 23

C Vulnerability Severity Rating 25

2 / 26

Security Review - Sendit Lending Protocol

1 Executive Summary
Neodyme audited Sendit’s on-chain lending and margin trading programs from October 2025 until
November 2025.

The review was time-boxed to two weeks and not a full security audit. It consisted of a review of
the changes to the SPL Lending program by Sendit as well as Sendit’s myield and cyield programs.
According to Neodymes Rating Classification, 8 security relevant and 3 informational were found.
The number of findings identified throughout the audit, grouped by severity, can be seen in Figure 1.

Critical 1

High 0

Medium 2

Low 5Se
ve

rit
y

Informational 3

Figure 1: Overview of Findings

The auditors reported all findings to the Sendit developers, who addressed them promptly. The
security fixes were verified for completeness by Neodyme. In addition to these findings, Neodyme
delivered the Sendit team a list of nit-picks and additional notes that are not part of this report.

Disclaimer: Please note that time-boxed reviews do not give the same security guarantees as full
audits. While we do our best to catch all critical bugs in the time provided, the chance that we miss
such a bug is higher than in a full audit.

3 / 26

Security Review - Sendit Lending Protocol

2 Introduction
From October 2025 until November 2025, Sendit engaged Neodyme to do a time-boxed security
review of their lending and margin trading programs. Two senior security researchers from Neodyme
conducted independent reviews of the contracts between the 28th of October 2025 and the 7th of
November 2025. Additionally two junior auditors joined the audit. Both senior auditors have a long
track record of finding critical and other vulnerabilities in Solana programs, as well as in Solana’s core
code itself, and have extensive knowledge about the SPL lending contract.

The review focused on the technical security of the contracts. Additionally we considered some eco-
nomical attacks on the lending and margin trading mechanisms. In the following sections, we present
our findings.

Summary of Findings

All found issues were quickly remediated. In total, the audit revealed:

1 critical 0 high-severity 2 medium-severity 5 low-severity 3 informational

issues.

4 / 26

https://neodyme.io

Security Review - Sendit Lending Protocol

3 Scope
The contract audit’s scope comprised of three major components:

• Primarily the changes to the SPL lending protocol
• Additionally, the cyield vault contract and the myield vault contract.

Special focus was placed on the following two topics:

• Vesting fees, due to the fact that fees are taken directly from the deposit account
• Yield Looping, due to the fact that it is designed to (temporarily) violate invariants

Neodyme considers the source code, located at https://github.com/onogroup/partner-octane/, in
scope for this audit. Third-party dependencies are not in scope.

During the audit, minor changes and fixes were made by Sendit, which the auditors also reviewed
in-depth.

Relevant source code revisions are:

• 5369c92fe7675aedd2034bcb899755f9a277eec7 · Start of the audit
• ec100f59732aa0df64fc492413e176e83465b1f4 · Last reviewed revision

5 / 26

https://github.com/onogroup/partner-octane/

Security Review - Sendit Lending Protocol

4 Project Overview
This section provides an overview of Sendit - covering core functionality, high-level design and its
instructions.

Functionality

The time-boxed review focused on three main components, described below.

lending

The lending contract is derived from Solend (now Safe), which itself is built on the SPL lending
architecture. It is implemented in raw Rust.

On top of basic lending mechanics, Sendit introduced additional features that were included in scope,
such as:

• Liquidity incentives: Vault depositors receive incentives proportionally to their collateral share.
• Yield looping: Enables cycling borrowed SOL back into the vault to compound returns.
• Simplified lending model: Only SOL can be borrowed, while collateral must be non-SOL.
• Loan origination fee flow: Origination fees are redirected to SOL liquidity providers.

Various other extensions were also reviewed. As the central protocol component, the changes to the
lending contract received the most examination.

cyield

The cyield program serves as a SOL-based vault system. Users deposit SOL, and a permissioned
operator allocates these funds across lending pools.

Withdrawals are possible at any time; however, withdrawals that require market interactions do incur
exit costs if the user deposited recently.

Incentives accrued from the lending contract are periodically converted to SOL by the operator at the
current exchange rate when the corresponding instruction is executed.

myield

myield operates similarly to cyield, but for memecoins. Each vault is tied to a single lending market
and aims to capture positive yield spreads, often driven by incentive emissions.

A target LTV is maintained per vault and adjusted by the operator as markets move.

6 / 26

Security Review - Sendit Lending Protocol

Instructions

New instructions in lending

The lending contract exposes 6 new instructions, summarized below.

Instruction Category Summary

DepositMaxReserveLiquidity
AndObligationCollateral

Permissionless Deposits an account’s full token balance
as liquidity and collateral; convenience
variant of DepositReserveLiquidityAn-
dObligationCollateral

RepayMaxObligationLiquidity Obligation-Owner only Repays an obligation’s borrowed assets
using the maximum available liquidity

YieldLoop Obligation-Owner only Borrows SOL at the maximum allowed
amount and redeploys it to compound
yield

YieldUnloop Obligation-Owner only Reverses YieldLoop, reducing leverage
and exposure

MarkLiquidatable Permissionless Marks an obligation as liquidatable for a
liquidator

CloseLiquidationMark Liquidator-only Closes a liquidation mark created via
MarkLiquidatable

cyield

The cyield contract exposes 8 instructions, summarized below.

Instruction Category Summary

CreateVault Operator-only Creates a new vault

Deposit Permissionless Deposits SOL into a vault and mints vault tokens in
return

Withdraw User-only Redeems vault tokens for available SOL liquidity

WithdrawWithMarket User-only Redeems vault tokens for SOL, including funds pulled
from a lending market if needed

DeployToMarket Operator-only Deploys vault liquidity into a lending market

WithdrawFromMarket Operator-only Withdraws liquidity from a lending market back to the
vault

WithdrawFees Operator-only Withdraws accumulated performance fees

ClaimAndSellRewards Operator-only Claims market incentive tokens and swaps them to SOL

7 / 26

Security Review - Sendit Lending Protocol

myield

The myield contract exposes 8 instructions, summarized below.

Instruction Category Summary

CreateVault Operator-only Creates a new vault

Deposit Permissionless Deposits memecoins into a lending market

Withdraw User-only Redeems vault tokens back to liquidity tokens includ-
ing earned yield

IncreaseLTV Vault-Operator-only Increases vault LTV via leveraged looping

DecreaseLTV Vault-Operator-only Reduces LTV by unwinding a leverage loop

RealiseInterestLoss Vault-Operator-only Covers a SOL debt shortfall in exchange for collateral
tokens

AccrueRewards Permissionless Accrues lending-market incentive rewards into the
vault

AccrueInterestGain Vault-Operator-only Realizes interest gains accrued within the lending po-
sition

8 / 26

Security Review - Sendit Lending Protocol

5 Findings
This section outlines all of our findings. They are classified into one of five severity levels, detailed in
Appendix C. In addition to these findings, Neodyme delivered the Sendit team a list of nit-picks and
additional notes which are not part of this report.

All findings are listed in Table 4 and further described in the following sections.

Identifier Name Severity Status

ND-SDIT-CR-01 RedeemReserveCollateral does not check in-
centive accounts

CRITICAL Resolved

ND-SDIT-MD-01 LiquidationMarks can be DoSed MEDIUM Resolved

ND-SDIT-MD-02 Vault incentive account can be DoSed MEDIUM Resolved

ND-SDIT-LO-01 DepositReserveLiquidity can be DoSed LOW Resolved

ND-SDIT-LO-02 InitReserve is permissionless LOW Resolved

ND-SDIT-LO-03 InitReserve: Fee owner constraint can be by-
passed

LOW Resolved

ND-SDIT-LO-04 Incorrect incentive calculation LOW Resolved

ND-SDIT-LO-05 WithdrawWithMarket: Flooring of transferred
liquidity can fail

LOW Resolved

ND-SDIT-IN-01 DepositReserveLiquidity: No address check
on user_incentive_info

INFORMATIONAL Resolved

ND-SDIT-IN-02 Closed LiquidationMarks can be revived INFORMATIONAL Resolved

ND-SDIT-IN-03 DeployToMarket: Wrong token program INFORMATIONAL Resolved

Table 4: Findings

9 / 26

Security Review - Sendit Lending Protocol

[ND-SDIT-CR-01] RedeemReserveCollateral does not check incen-
tive accounts

Severity Impact Affected Component Status

CRITICAL Loss of Funds Incentive Withdrawal Resolved

Sendit allows pool administrators to configure incentive rewards for a lending market, which
depositors can earn in addition to regular interest. Incentives are paid out in the internal function
_redeem_reserve_collateral_incentive, which is invoked by RedeemReserveCollateral. However,
this call path performs no validation of the provided accounts, most critically, it does not verify that
incentive_token_account_info is the legitimate incentive-vault token account.

1 if pending_incentives > 0 {
2 // Update user's incentive debt (mark rewards as claimed)
3 let mut updated_user_data = existing_user_data.clone();
4 updated_user_data.incentive_debt = reserve
5 .liquidity_incentives
6 .calculate_incentive_debt(updated_user_data.ctoken_amount)?;
7
8 // Transfer incentives
9 let authority_signer_seeds = &[
10 lending_market_info.key.as_ref(),
11 &[lending_market.bump_seed],
12];
13
14 spl_token_transfer_liquidity(LiquidityTokenTransferParams {
15 mint: incentive_token_mint_info.clone(),
16 source: incentive_token_account_info.clone(),
17 destination: user_incentive_token_account_info.clone(),
18 amount: pending_incentives as u64,
19 authority: lending_market_authority_info.clone(),
20 authority_signer_seeds,
21 token_program: incentive_token_program_id.clone(),
22 decimals: reserve.liquidity_incentives.incentive_token_decimals,
23 })?;
24 }

Because the program accepts any account as the incentive-vault source, an attacker
can replace the correct reserve.liquidity_incentives.incentive_token_account with
reserve.liquidity.supply_pubkey. This changes the transfer to take the tokens from the reserves
liquidity vault, effectively draining it.

The attack becomes profitable whenever the reserve liquidity token is more valuable than the
incentive token and the incentive decimals are 9 or when the reserve incentives are not set yet and
can be set by an attacker. Three markets were affected by this flaw.

10 / 26

Security Review - Sendit Lending Protocol

Resolution

Sendit quickly fixed the bug in commit f990e0502527269fc44fc5c11159ba2407db9fa9 by enforcing
that the supplied token account matches
reserve.liquidity_incentives.incentive_token_account. Neodyme verified the fix.

11 / 26

Security Review - Sendit Lending Protocol

[ND-SDIT-MD-01] LiquidationMarks can be DoSed

Severity Impact Affected Component Status

MEDIUM Denial of Service of permissionless liquidations Liquidation Resolved

In the lending contract, a user can create a LiquidationMark to mark a liquidation as liquidatable
by them in the future. This LiquidationMark is a PDA derived as PDA([obligation_info.key,
liquidation_info.key]).

Because this address is fully predictable and the program uses a CreateAccount instruction to
initialize the LiquidationMark account, an attacker can pre-fund the PDA with lamports. Once the
PDA already exists with a balance, the program cannot create the expected account anymore, causing
all attempts to set a LiquidationMark at that address to fail. This enables a denial of service against
permissionless liquidations.

1 let authority_signer_seeds: &[&[&[u8]]] = &[&[
2 obligation_info.key.as_ref(),
3 liquidator_info.key.as_ref(),
4 &[bump],
5]];
6 let create_ix = create_account(
7 liquidator_info.key,
8 liquidation_mark_info.key,
9 Rent::get()?.minimum_balance(LiquidationMark::LEN),
10 LiquidationMark::LEN as u64,
11 program_id,
12);
13 let account_infos = vec![
14 liquidator_info.clone(),
15 liquidation_mark_info.clone(),
16 system_account_info.clone(),
17];
18 invoke_signed(&create_ix, &account_infos, authority_signer_seeds)?;

Resolution

Sendit quickly fixed the issue by using the idempotent account creation mechanism found at https://
github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L
16 in commit 8b8691bf33169465b81f28ee065210041b43db99. Neodyme verified the fix.

12 / 26

https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16

Security Review - Sendit Lending Protocol

[ND-SDIT-MD-02] Vault incentive account can be DoSed

Severity Impact Affected Component Status

MEDIUM Blocks withdraw functionality cyield: Withdraw Resolved

The cyield contract creates the vault’s incentive token account in WithdrawWithMarket,
WithdrawFromMarket, and ClaimAndSellRewards whenever it is missing. This account is a PDA derived
as PDA(["incentive_token_account", vault.key, incentive_token_mint]).

Because the address is fully predictable and the account is initialized via a CreateAccount instruction,
an attacker can preemptively fund that PDA with lamports. Once funded, the program can no longer
create the expected account, causing all affected instructions to fail and thereby blocking vault
withdrawals.

1
🔗 blab.rs, lines 10-15// Setup incentive token account if needed

2 if vault_incentive_token_account.data_is_empty() {
3 // Create token account for incentive token
4 let seeds = &[
5 b"incentive_token_account".as_ref(),
6 &vault.key().to_bytes()[..],
7 &reserve.liquidity_incentives.incentive_token_mint.to_bytes()[..],
8 &[vault_incentive_token_account_bump],
9];
10 let signer_seeds = &[&seeds[..]];
11 let cpi_ctx = CpiContext::new_with_signer(
12 token_program.to_account_info(),
13 anchor_lang::system_program::CreateAccount {
14 from: payer,
15 to: vault_incentive_token_account.to_account_info(),
16 },
17 signer_seeds,
18);
19 anchor_lang::system_program::create_account(
20 cpi_ctx,
21 Rent::get()?.minimum_balance(account_len as usize),
22 account_len as u64,
23 &token_program.key(),
24)?;
25 }

Resolution

Sendit quickly fixed the issue by using the idempotent account creation mechanism found at https://
github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L
16 in commit 70a1ab3d6dad781e35c7c9fe5bc8a453a92ac767. Neodyme verified the fix.

13 / 26

https://github.com/
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16

Security Review - Sendit Lending Protocol

[ND-SDIT-LO-01] DepositReserveLiquidity can be DoSed

Severity Impact Affected Component Status

LOW Denial of Service Liquidity Deposits Resolved

In DepositReserveLiquidity, the lending contract creates a UserIncentiveData account to track a
user’s incentive-related state. This UserIncentiveData account is a PDA derived as PDA(["user-
incentive", user_transfer_authority_info.key, reserve.key]).

Since the PDA address is fully predictable and the program initializes the account using a
CreateAccount instruction, an attacker can prefund the PDA with lamports before the legitimate
depositor calls the instruction. Once the PDA already exists with a balance, the program cannot create
the expected account, causing all liquidity deposit attempts that rely on this account to fail, resulting
in a denial of service.

Resolution

Sendit quickly fixed the issue by using the idempotent account creation mechanism found at https://
github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L
16 in commit 0a277b491e38f56daf8adfca0a7b99252de3fa5e. Neodyme verified the fix.

14 / 26

https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16

Security Review - Sendit Lending Protocol

[ND-SDIT-LO-02] InitReserve is permissionless

Severity Impact Affected Component Status

LOW Griefing of market initialization Market initialization Resolved

InitReserve does not verify that lending_market.owner == lending_market_owner_info. As a result,
an attacker could inject their own reserve into the lending market before the legitimate initializer
does, effectively sabotaging the intended setup. This issue does not arise when both the lending
market and the reserve are initialized atomically within the same transaction.

Resolution

Sendit resolved the problem by introducing the missing ownership check in commit
5a84fc68c119839ea4965e781fbc829aea8d6d6f. Neodyme has verified the fix.

15 / 26

Security Review - Sendit Lending Protocol

[ND-SDIT-LO-03] InitReserve: Fee owner constraint can be by-
passed

Severity Impact Affected Component Status

LOW Market creation with an invalid fee destination Market initialization Resolved

Within InitReserve, the lending contract does not verify that the protocol_fee_receiver_info
account is actually owned by the token program. An attacker can create a non–token-program-
owned account that mimics the structure of a token account and sets its owner field to the global
FEE_RECEIVER.

After the reserve is initialized, the attacker can delete this fake account and recreate it with a legitimate
token account they fully control, effectively redirecting all protocol fees for that market to themselves.

Resolution

Sendit addressed the issue by adding an explicit owner check in commit
8abc9d221362a9679759953a8e8d21a1bb28f985. Neodyme has verified the fix.

16 / 26

Security Review - Sendit Lending Protocol

[ND-SDIT-LO-04] Incorrect incentive calculation

Severity Impact Affected Component Status

LOW Wrong incentive payout Liquidity incentives Resolved

In add_incentives, the program computes incentives_per_slot using the incentive mint’s
decimals. However, if the mint has more than 9 decimals, the scaling logic becomes incorrect:
10u128.pow(9.saturating_sub(decimals)) underflows and effectively collapses to 10^0, producing
an invalid conversion factor and therefore an incorrect incentive distribution.

1 let amount_in_lamports = (incentive_amount as u128)
2 .checked_mul(10u128.pow(9_u32.saturating_sub(decimals as u32)))
3 .ok_or(LendingError::MathOverflow)?;
4
5 // Calculate incentives per slot (amount / total_slots)
6 let new_incentives_per_slot = amount_in_lamports
7 .checked_mul(INCENTIVE_PRECISION)
8 .ok_or(LendingError::MathOverflow)?
9 .checked_div(raw_total_slots_u128)
10 .ok_or(LendingError::MathUnderflow)?;

Resolution

Sendit fixed the issue by enforcing a mint has decimals <= 9 in commit
ec100f59732aa0df64fc492413e176e83465b1f4. Neodyme verified the fix.

17 / 26

Security Review - Sendit Lending Protocol

[ND-SDIT-LO-05] WithdrawWithMarket: Flooring of transferred liq-
uidity can fail

Severity Impact Affected Component Status

LOW Withdrawal failure cyield: WithdrawWithMarket Resolved

When withdrawing liquidity with WithdrawWithMarket, the instruction attempts to compensate for
the flooring behavior of liquidity_to_collateral by applying saturating_add(1) to the required
liquidity amount. For tokens with a high value in lamports, this adjustment does not reliably offset the
floor operation, causing the computed collateral amount to fall short. This results in sporadic failures
of WithdrawWithMarket, depending on the exchange relationship between the cToken and SOL.

1 // Add 1 to ensure we withdraw enough liquidity because
liquidity_to_collateral floors

2 let c_token_amount = reserve
3 .collateral_exchange_rate()?
4 .liquidity_to_collateral(needed_liquidity.saturating_add(1))?
5 .min(ctx.accounts.vault_collateral_token_account.amount);

Resolution

Sendit fixed the issue in commit b9d63b9509f5345e1a6d5c244c5cd1a701bbcfe8 by moving the
saturating_add after the call to liquidity_to_collateral. Neodyme verified the fix.

18 / 26

Security Review - Sendit Lending Protocol

[ND-SDIT-IN-01] DepositReserveLiquidity: No address check on
user_incentive_info

Severity Impact Affected Component Status

INFORMATIONAL None Liquidity Deposits Resolved

In DepositReserveLiquidity, the lending contract does not explicitly validate that the correct PDA
was provided for user_incentive_info in cases where the account already contains data. This is not
a security issue because _update_user_incentive_ctoken always writes to user_incentive_info,
causing the Solana runtime to implicitly enforce that the account is program-owned. However, for
correctness and consistency, the PDA should be validated on every call, not only when the account is
newly created.

1 if user_incentive_info.data_is_empty() && reserve.config.loan_to_value_ratio
== 0 {

2 // Find and validate user incentive data PDA
3 let bump_seed = find_and_validate_user_incentive_data_address(
4 program_id,
5 user_transfer_authority_info.key,
6 reserve_info.key,
7 user_incentive_info,
8)?;
9
10 // […]
11 }

Resolution

Sendit moved the address check in commit 9bd8e815bf4759d545a0a75282d303ab4d04c27a. Neodyme
verified the fix.

19 / 26

Security Review - Sendit Lending Protocol

[ND-SDIT-IN-02] Closed LiquidationMarks can be revived

Severity Impact Affected Component Status

INFORMATIONAL None Liquidation marks Resolved

In CloseLiquidationMark, the program closes the LiquidationMark account by setting its lamports to
zero. This marks the account for garbage collection by the Solana runtime. However, since ownership
is not reassigned to the system program, an attacker could theoretically top up the account’s rent
after closure, preventing its cleanup. This does not introduce a security risk as MarkLiquidatable is
idempotent, but it is generally considered poor practice.

Resolution

Sendit addressed the issue by assigning the account back to the system program while closing the
account in commit 58420c0fa5d36409177a3109af6e38dff92526d2. Neodyme has verified the fix.

20 / 26

Security Review - Sendit Lending Protocol

[ND-SDIT-IN-03] DeployToMarket: Wrong token program

Severity Impact Affected Component Status

INFORMATIONAL None cyield Resolved

The call to DepositReserveLiquidity in cyield’s DeployToMarket reuses the token_program account
for both the token_program and collateral_token_program function arguments, instead of using the
collateral_token_program account supplied.

Resolution

Sendit addressed the issue in commit 60d067a39bd0c5943c37cb7ff7f6f4abe3028516. Neodyme has
verified the fix.

21 / 26

Security Review - Sendit Lending Protocol

A About Neodyme
Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully under-
stand every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competi-
tions, called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption,
reverse engineering complicated algorithms, and much more. Through the years, many of our team
members have won national and international hacking competitions, and keep ranking highly among
some of the hardest CTF events worldwide. In 2020, some of our members started experimenting
with validators and became active members in the early Solana community. With the prospect of an
interesting technical challenge and bug bounties, they quickly encouraged others from our CTF team
to look for security issues in Solana. The result was so successful that after reporting several bugs, in
2021, the Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

22 / 26

Security Review - Sendit Lending Protocol

B Methodology
We are not checklist auditors.

In fact, we pride ourselves on that. We adapt our approach to each audit, investing considerable time
into understanding the program upfront and exploring its expected behavior, edge cases, invariants,
and ways in which the latter could be violated.

We use our uniquely deep knowledge of Solana internals, and our years-long experience in auditing
Solana programs to find bugs that others miss. We often extend our audit to cover off-chain compo-
nents in order to see how users could be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list here.

Select Common Vulnerabilities

Our most common findings are still specific to Solana itself. Among these are vulnerabilities such as
the ones listed below:

• Insufficient validation, such as:
‣ Missing ownership checks
‣ Missing signer checks
‣ Signed invocation of unverified programs
‣ Account confusions
‣ Missing freeze authority checks
‣ Insufficient SPL account verification
‣ Dangerous user-controlled bumps
‣ Insufficient Anchor account linkage

• Account reinitialization vulnerabilities
• Account creation DoS
• Redeployment with cross-instance confusion
• Missing rent exemption assertion
• Casting truncation
• Arithmetic over- or underflows
• Numerical precision and rounding errors
• Anchor pitfalls, such as accounts not being reloaded
• Non-unique seeds
• Issues arising from CPI recursion
• Log truncation vulnerabilities
• Vulnerabilities specific to integration of Token Extensions, for example unexpected external

token hook calls

23 / 26

Security Review - Sendit Lending Protocol

Apart from such Solana-specific findings, some of the most common vulnerabilities relate to the
general logical structure of the contract. Specifically, such findings may be:

• Errors in business logic
• Mismatches between contract logic and project specifications
• General denial-of-service attacks
• Sybil attacks
• Incorrect usage of on-chain randomness
• Contract-specific low-level vulnerabilities, such as incorrect account memory management
• Vulnerability to economic attacks
• Allowing front-running or sandwiching attacks

Miscellaneous other findings are also routinely checked for, among them:
• Unsafe design decisions that might lead to vulnerabilities being introduced in the future

‣ Additionally, any findings related to code consistency and cleanliness
• Rug pull mechanisms or hidden backdoors

Often, we also examine the authority structure of a contract, investigating their security as well as the
impact on contract operations should they be compromised.

Over the years, we have found hundreds of high and critical severity findings, many of which are highly
nontrivial and do not fall into the strict categories above. This is why our approach has always gone
way beyond simply checking for common vulnerabilities. We believe that the only way to truly secure
a program is a deep and tailored exploration that covers all aspects of a program, from small low-level
bugs to complex logical vulnerabilities.

24 / 26

Security Review - Sendit Lending Protocol

C Vulnerability Severity Rating
We use the following guideline to classify the severity of vulnerabilities. Note that we assess each
vulnerability on an individual basis and may deviate from these guidelines in cases where it is well-
founded. In such cases, we always provide an explanation.

Severity Description

CRITICAL Vulnerabilities that will likely cause loss of funds. An attacker can trigger them
with little or no preparation, or they are expected to happen accidentally.
Effects are difficult to undo after they are detected.

HIGH Bugs that can be used to set up loss of funds in a more limited capacity, or to
render the contract unusable.

MEDIUM Bugs that do not cause direct loss of funds but that may lead to other
exploitable mechanisms, or that could be exploited to render the contract
partially unusable.

LOW Bugs that do not have a significant immediate impact and could be fixed easily
after detection.

INFORMATIONAL Bugs or inconsistencies that have little to no security impact, but are still
noteworthy.

Additionally, we often provide the client with a list of nit-picks, i.e. findings whose severity lies below
Informational. In general, these findings are not part of the report.

25 / 26

Security Review - Sendit Lending Protocol

Neodyme AG

Dirnismaning 55
Halle 13
85748 Garching
Germany

E-Mail: contact@neodyme.io

https://neodyme.io

26 / 26

mailto:contact@neodyme.io
https://neodyme.io

	Executive Summary
	Introduction
	Summary of Findings

	Scope
	Project Overview
	Functionality
	lending
	cyield
	myield

	Instructions
	New instructions in lending
	cyield
	myield

	Findings
	[ND-SDIT-CR-01] RedeemReserveCollateral does not check incentive accounts
	Resolution

	[ND-SDIT-MD-01] LiquidationMarks can be DoSed
	Resolution

	[ND-SDIT-MD-02] Vault incentive account can be DoSed
	Resolution

	[ND-SDIT-LO-01] DepositReserveLiquidity can be DoSed
	Resolution

	[ND-SDIT-LO-02] InitReserve is permissionless
	Resolution

	[ND-SDIT-LO-03] InitReserve: Fee owner constraint can be bypassed
	Resolution

	[ND-SDIT-LO-04] Incorrect incentive calculation
	Resolution

	[ND-SDIT-LO-05] WithdrawWithMarket: Flooring of transferred liquidity can fail
	Resolution

	[ND-SDIT-IN-01] DepositReserveLiquidity: No address check on user_incentive_info
	Resolution

	[ND-SDIT-IN-02] Closed LiquidationMarks can be revived
	Resolution

	[ND-SDIT-IN-03] DeployToMarket: Wrong token program
	Resolution

	About Neodyme
	Methodology
	Select Common Vulnerabilities

	Vulnerability Severity Rating

