Security Review - Sendit Lending Protocol

conducted by Neodyme AG

Lead Auditor: Sebastian Fritsch
Second Auditor: Nico Griindel
Third Auditor: Benjamin Walny
Fourth Auditor: Tobias Bucher

Administrative Lead: Jasper Slussalek

December 08, 2025

Security Review - Sendit Lending Protocol

Table of Contents

1 Executive Summary

2 Introduction
Summaryof Findings e e

3 Scope

4 Project Overview
Functionality e e e e
INStructions L e e e e

5 Findings

[ND-SDIT-CR-01] RedeemReserveCollateral does not check incentive accounts
[ND-SDIT-MD-01] LiquidationMarkscanbeDoSed
[ND-SDIT-MD-02] Vaultincentive accountcanbeDoSed
[ND-SDIT-L0-01] DepositReserveLiquiditycanbeDoSed
[ND-SDIT-L0-02] InitReserveis permissionless
[ND-SDIT-L0-03] InitReserve: Fee owner constraintcanbebypassed
[ND-SDIT-L0-04] Incorrectincentive calculation
[ND-SDIT-L0-05] WithdrawWithMarket: Flooring of transferred liquidity canfail
[ND-SDIT-IN-01] DepositReservelLiquidity: No address check on user incentive info .

[ND-SDIT-IN-02] Closed LiquidationMarkscanberevived
[ND-SDIT-IN-03] DeployToMarket: Wrong tokenprogram

Appendices
A About Neodyme

B Methodology
Select Common Vulnerabilities e

C Vulnerability Severity Rating

22

23
23

25

2/26

Security Review - Sendit Lending Protocol

Executive Summary

Neodyme audited Sendit’s on-chain lending and margin trading programs from October 2025 until
November 2025.

The review was time-boxed to two weeks and not a full security audit. It consisted of a review of
the changes to the SPL Lending program by Sendit as well as Sendit’s myield and cyield programs.
According to Neodymes Rating Classification, 8 security relevant and 3 informational were found.
The number of findings identified throughout the audit, grouped by severity, can be seen in Figure 1.

critical [N 1
> High' 0
E Medium
(%
(%]

Low

N
w
(&,

Informational

Figure 1: Overview of Findings

The auditors reported all findings to the Sendit developers, who addressed them promptly. The
security fixes were verified for completeness by Neodyme. In addition to these findings, Neodyme
delivered the Sendit team a list of nit-picks and additional notes that are not part of this report.

Disclaimer: Please note that time-boxed reviews do not give the same security guarantees as full
audits. While we do our best to catch all critical bugs in the time provided, the chance that we miss
such a bug is higher than in a full audit.

3/26

Security Review - Sendit Lending Protocol

Introduction

From October 2025 until November 2025, Sendit engaged Neodyme to do a time-boxed security
review of their lending and margin trading programs. Two senior security researchers from Neodyme
conducted independent reviews of the contracts between the 28th of October 2025 and the 7th of
November 2025. Additionally two junior auditors joined the audit. Both senior auditors have a long
track record of finding critical and other vulnerabilities in Solana programs, as well asin Solana’s core
code itself, and have extensive knowledge about the SPL lending contract.

The review focused on the technical security of the contracts. Additionally we considered some eco-
nomical attacks on the lending and margin trading mechanisms. In the following sections, we present
our findings.

Summary of Findings
All found issues were quickly remediated. In total, the audit revealed:

1 critical * 0 high-severity ® 2 medium-severity * 5 low-severity ¢ 3 informational

issues.

4/26

https://neodyme.io

Security Review - Sendit Lending Protocol
Scope

The contract audit’s scope comprised of three major components:

+ Primarily the changes to the SPL lending protocol
« Additionally, the cyield vault contract and the myield vault contract.

Special focus was placed on the following two topics:

+ Vesting fees, due to the fact that fees are taken directly from the deposit account
+ Yield Looping, due to the fact that it is designed to (temporarily) violate invariants

Neodyme considers the source code, located at https://github.com/onogroup/partner-octane/, in
scope for this audit. Third-party dependencies are not in scope.

During the audit, minor changes and fixes were made by Sendit, which the auditors also reviewed
in-depth.

Relevant source code revisions are:

e 5369c92fe7675aedd2034bcb899755f9a277eec? - Start of the audit
» ecl00f59732aa0df64fc492413e176e83465b1f4 - Last reviewed revision

5/26

https://github.com/onogroup/partner-octane/

Security Review - Sendit Lending Protocol

Project Overview

This section provides an overview of Sendit - covering core functionality, high-level design and its
instructions.

Functionality

The time-boxed review focused on three main components, described below.

lending

The lending contract is derived from Solend (now Safe), which itself is built on the SPL lending
architecture. It is implemented in raw Rust.

On top of basic lending mechanics, Sendit introduced additional features that were included in scope,
such as:

+ Liquidity incentives: Vault depositors receive incentives proportionally to their collateral share.
+ Yield looping: Enables cycling borrowed SOL back into the vault to compound returns.

+ Simplified lending model: Only SOL can be borrowed, while collateral must be non-SOL.

+ Loan origination fee flow: Origination fees are redirected to SOL liquidity providers.

Various other extensions were also reviewed. As the central protocol component, the changes to the
lending contract received the most examination.
cyield

The cyield program serves as a SOL-based vault system. Users deposit SOL, and a permissioned
operator allocates these funds across lending pools.

Withdrawals are possible at any time; however, withdrawals that require market interactions do incur
exit costs if the user deposited recently.

Incentives accrued from the lending contract are periodically converted to SOL by the operator at the
current exchange rate when the corresponding instruction is executed.
myield

myield operates similarly to cyield, but for memecoins. Each vault is tied to a single lending market
and aims to capture positive yield spreads, often driven by incentive emissions.

Atarget LTV is maintained per vault and adjusted by the operator as markets move.

6/26

Security Review - Sendit Lending Protocol

Instructions

New instructions in lending

The lending contract exposes 6 new instructions, summarized below.

Instruction

DepositMaxReserveLiquidity

AndObligationCollateral

RepayMaxObligationLiquidity

YieldLoop

YieldUnloop

MarkLiquidatable

CloseLiquidationMark

cyield

Category

Summary

Permissionless Deposits an account’s full token balance

as liquidity and collateral; convenience
variant of DepositReservelLiquidityAn-
dObligationCollateral

Obligation-Owner only Repays an obligation’s borrowed assets

using the maximum available liquidity

Obligation-Owner only Borrows SOL at the maximum allowed

amount and redeploys it to compound
yield

Obligation-Owner only Reverses YieldLoop, reducing leverage

and exposure

Permissionless Marks an obligation as liquidatable for a
liguidator
Liquidator-only Closes a liquidation mark created via

MarkLiquidatable

The cyield contract exposes 8 instructions, summarized below.

Instruction
CreateVault

Deposit

Withdraw
WithdrawWithMarket

DeployToMarket
WithdrawFromMarket

WithdrawFees
ClaimAndSellRewards

Category
Operator-only

Permissionless

User-only

User-only

Operator-only

Operator-only

Operator-only

Operator-only

Summary
Creates a new vault

Deposits SOL into a vault and mints vault tokens in

return
Redeems vault tokens for available SOL liquidity

Redeems vault tokens for SOL, including funds pulled
from a lending market if needed

Deploys vault liquidity into a lending market

Withdraws liquidity from a lending market back to the
vault

Withdraws accumulated performance fees

Claims market incentive tokens and swaps them to SOL

7/26

Security Review - Sendit Lending Protocol

myield

The myield contract exposes 8 instructions, summarized below.

Instruction
CreateVault
Deposit
Withdraw

IncreaselLTV
DecreaselTV

RealiselnterestLoss

AccrueRewards

AccruelnterestGain

Category
Operator-only
Permissionless

User-only

Vault-Operator-only
Vault-Operator-only
Vault-Operator-only

Permissionless

Vault-Operator-only

Summary
Creates a new vault
Deposits memecoins into a lending market

Redeems vault tokens back to liquidity tokens includ-
ing earned yield

Increases vault LTV via leveraged looping
Reduces LTV by unwinding a leverage loop

Covers a SOL debt shortfall in exchange for collateral
tokens

Accrues lending-market incentive rewards into the
vault

Realizes interest gains accrued within the lending po-
sition

8/26

Security Review - Sendit Lending Protocol

Findings

This section outlines all of our findings. They are classified into one of five severity levels, detailed in

Appendix C. In addition to these findings, Neodyme delivered the Sendit team a list of nit-picks and

additional notes which are not part of this report.

All findings are listed in Table 4 and further described in the following sections.

Identifier

ND-SDIT-CR-01

ND-SDIT-MD-01
ND-SDIT-MD-02
ND-SDIT-LO-01
ND-SDIT-LO-02
ND-SDIT-LO-03

ND-SDIT-LO-04
ND-SDIT-LO-05

ND-SDIT-IN-01

ND-SDIT-IN-02
ND-SDIT-IN-03

Name

RedeemReserveCollateral does not check in-

centive accounts

LiquidationMarks can be DoSed

Vault incentive account can be DoSed

DepositReservelLiquidity can be DoSed

InitReserve is permissionless

InitReserve: Fee owner constraint can be by-

passed

Incorrect incentive calculation

WithdrawWithMarket: Flooring of transferred

liquidity can fail

DepositReservelLiquidity: No address check

onuser_incentive info

Closed LiquidationMarks can be revived

DeployToMarket: Wrong token program

Table 4: Findings

Severity

CRITICAL

LOow
LOowW
Low

LOwW
LOow

Status

Resolved

Resolved
Resolved
Resolved
Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

9/26

Security Review - Sendit Lending Protocol

[ND-SDIT-CR-01] RedeemReserveCollateral does not check incen-
tive accounts

Severity Impact Affected Component Status
o110 [o/:\E Loss of Funds Incentive Withdrawal Resolved

Sendit allows pool administrators to configure incentive rewards for a lending market, which
depositors can earn in addition to regular interest. Incentives are paid out in the internal function
_redeem reserve collateral incentive, which is invoked by RedeemReserveCollateral. However,
this call path performs no validation of the provided accounts, most critically, it does not verify that
incentive token account info isthe legitimate incentive-vault token account.

1 if pending incentives > 0 {

2 // Update user's incentive debt (mark rewards as claimed)

3 let mut updated user data = existing user data.clone();

4 updated user data.incentive debt = reserve

5 .liquidity incentives

6 .calculate incentive debt(updated user data.ctoken amount)?;
7

8 // Transfer incentives

9 let authority signer seeds = &[

10 lending market info.key.as ref(),

11 &[lending market.bump seed],
12 I

14 spl token transfer liquidity(LiquidityTokenTransferParams {
15 mint: incentive token mint info.clone(),

16 source: incentive token account _info.clone(),

17 destination: user _incentive token account info.clone(),
18 amount: pending_incentives as u64,

19 authority: lending market authority info.clone(),

20 authority signer_seeds,

21 token program: incentive token program_id.clone(),

22 decimals: reserve.liquidity incentives.incentive token decimals,
23 })7;

24}

Because the program accepts any account as the incentive-vault source, an attacker
can replace the correct reserve.liquidity incentives.incentive token account with
reserve.liquidity.supply pubkey. This changes the transfer to take the tokens from the reserves
liquidity vault, effectively draining it.

The attack becomes profitable whenever the reserve liquidity token is more valuable than the
incentive token and the incentive decimals are 9 or when the reserve incentives are not set yet and
can be set by an attacker. Three markets were affected by this flaw.

10/26

Security Review - Sendit Lending Protocol

Resolution

Sendit quickly fixed the bug in commit f990e0502527269fc44fc5c11159ba2407db9fa9 by enforcing

that the supplied token account matches
reserve.liquidity incentives.incentive token account. Neodyme verified the fix.

11/26

Security Review - Sendit Lending Protocol

[ND-SDIT-MD-01] LiquidationMarks can be DoSed

Severity Impact Affected Component ~ Status
m Denial of Service of permissionless liquidations Liquidation Resolved

In the lending contract, a user can create a LiquidationMark to mark a liquidation as liquidatable
by them in the future. This LiquidationMark is a PDA derived as PDA([obligation info.key,

liquidation _info.keyl]).

Because this address is fully predictable and the program uses a CreateAccount instruction to
initialize the LiquidationMark account, an attacker can pre-fund the PDA with lamports. Once the
PDA already exists with a balance, the program cannot create the expected account anymore, causing
all attempts to set a LiquidationMark at that address to fail. This enables a denial of service against
permissionless liquidations.

1 let authority signer seeds: &[&[&[u8]1]1] = &[&]
2 obligation info.key.as ref(),

3 liquidator _info.key.as ref(),

4 &[bump],

5 115

6 let create_ix = create account(

7 liquidator info.key,

8 liquidation _mark info.key,

9 Rent::get()?.minimum balance(LiquidationMark::LEN),
10 LiquidationMark::LEN as u64,

11 program_id,

12);
13 let account_infos = vec![

14 liquidator_info.clone(),
15 liquidation _mark info.clone(),
16 system account info.clone(),

17 1;
18 invoke signed(&create ix, &account infos, authority signer seeds)?;

Resolution

Sendit quickly fixed the issue by using the idempotent account creation mechanism found at https://
github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L
16 in commit 8b8691bt33169465b8128e€065210041b43db99. Neodyme verified the fix.

12/26

https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16

Security Review - Sendit Lending Protocol

[ND-SDIT-MD-02] Vault incentive account can be DoSed

Severity Impact Affected Component Status

m Blocks withdraw functionality cyield: Withdraw Resolved

The cyield contract creates the vault’s incentive token account in WithdrawWithMarket,
WithdrawFromMarket, and ClaimAndSellRewards whenever itis missing. This account is a PDA derived

asPDA(["incentive token account", vault.key, incentive token mint]).

Because the address is fully predictable and the account is initialized via a CreateAccount instruction,
an attacker can preemptively fund that PDA with lamports. Once funded, the program can no longer
create the expected account, causing all affected instructions to fail and thereby blocking vault
withdrawals.

] . . .
// Setup incentive token account if needed blab.rs, lines 10-15

2 if vault _incentive token account.data is empty() {

3 // Create token account for incentive token

4 let seeds = &[

5 b"incentive token account".as ref(),

6 &vault.key().to bytes()[..1,

7 &reserve.liquidity incentives.incentive token mint.to bytes()[..],
8 &[vault incentive token account bumpl],

9 I8

10 let signer seeds = &[&seeds[..]];
11 let cpi_ctx = CpiContext::new with signer(
12 token program.to account info(),
13 anchor_lang::system program::CreateAccount {
14 from: payer,
15 to: vault incentive token account.to account info(),
16 },
17 signer_seeds,
18);
19 anchor lang::system program::create account(
20 cpi_ctx,
21 Rent::get()?.minimum balance(account len as usize),
22, account_len as u64,
23 &token program.key(),
24)?;
25 1}
Resolution

Sendit quickly fixed the issue by using the idempotent account creation mechanism found at https://
github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L
16 in commit 70alab3d6dad781e35c7c9fe5bc8ad53a92ac767. Neodyme verified the fix.

13/26

https://github.com/
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16

Security Review - Sendit Lending Protocol

[ND-SDIT-L0O-01] DepositReserveLiquidity can be DoSed

Severity Impact Affected Component Status
m Denial of Service Liquidity Deposits Resolved

In DepositReservelLiquidity, the lending contract creates a UserIncentiveData account to track a
user’s incentive-related state. This UserIncentiveData account is a PDA derived as PDA(["user-

incentive", user_transfer authority info.key, reserve.keyl]).

Since the PDA address is fully predictable and the program initializes the account using a
CreateAccount instruction, an attacker can prefund the PDA with lamports before the legitimate
depositor calls the instruction. Once the PDA already exists with a balance, the program cannot create
the expected account, causing all liquidity deposit attempts that rely on this account to fail, resulting
in a denial of service.

Resolution

Sendit quickly fixed the issue by using the idempotent account creation mechanism found at https://
github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L
16 in commit 0a277b491e38f56daf8adfcada7h99252de3fa5e. Neodyme verified the fix.

14/26

https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16

Security Review - Sendit Lending Protocol

[ND-SDIT-L0-02] InitReserve is permissionless

Severity Impact Affected Component Status

Low Griefing of market initialization Market initialization =~ Resolved

InitReserve does notverify that lending_market.owner == lending market owner_info.Asaresult,
an attacker could inject their own reserve into the lending market before the legitimate initializer
does, effectively sabotaging the intended setup. This issue does not arise when both the lending
market and the reserve are initialized atomically within the same transaction.

Resolution

Sendit resolved the problem by introducing the missing ownership check in commit
5a84fc68c119839ea4965e781fbc829aeas8d6d6f. Neodyme has verified the fix.

15/26

Security Review - Sendit Lending Protocol

[ND-SDIT-L0-03] InitReserve: Fee owner constraint can be by-

passed
Severity Impact Affected Component Status
LOW Market creation with an invalid fee destination Market initialization = Resolved

Within InitReserve, the lending contract does not verify that the protocol fee receiver info
account is actually owned by the token program. An attacker can create a non-token-program-
owned account that mimics the structure of a token account and sets its owner field to the global
FEE_RECEIVER.

Afterthereserveisinitialized, the attacker can delete this fake account and recreate it with a legitimate
token account they fully control, effectively redirecting all protocol fees for that market to themselves.

Resolution

Sendit addressed the issue by adding an explicit owner check in commit
8abc9d221362a9679759953a8e8d21albb28985. Neodyme has verified the fix.

16/26

Security Review - Sendit Lending Protocol

[ND-SDIT-L0-04] Incorrect incentive calculation

Severity Impact Affected Component Status

LOW Wrong incentive payout Liquidity incentives Resolved

In add_incentives, the program computes incentives per slot using the incentive mint’s
decimals. However, if the mint has more than 9 decimals, the scaling logic becomes incorrect:
10ul28.pow(9.saturating sub(decimals)) underflows and effectively collapses to 1070, producing

an invalid conversion factor and therefore an incorrect incentive distribution.

1 let amount _in lamports = (incentive amount as ul28)
.checked mul(10ul28.pow(9 u32.saturating sub(decimals as u32)))
.0k or(LendingError::MathOverflow)?;

g W

// Calculate incentives per slot (amount / total slots)
6 let new incentives per slot = amount in lamports
.checked mul(INCENTIVE PRECISION)

]

8 .0k or(LendingError::MathOverflow)?

9 .checked div(raw_total slots ul28)

10 .0k _or(LendingError::MathUnderflow)?;
Resolution

Sendit fixed the issue by enforcing a mint has decimals <= 9 in commit
ecl00f59732aa0df64fc492413e176e83465b1f4. Neodyme verified the fix.

17/26

Security Review - Sendit Lending Protocol

[ND-SDIT-LO0-05] WithdrawWithMarket: Flooring of transferred lig-
uidity can fail

Severity Impact Affected Component Status
m Withdrawal failure cyield: WithdrawWithMarket Resolved

When withdrawing liquidity with WithdrawWithMarket, the instruction attempts to compensate for
the flooring behavior of liquidity to collateral by applying saturating add(1) to the required
liquidity amount. For tokens with a high value in lamports, this adjustment does not reliably offset the
floor operation, causing the computed collateral amount to fall short. This results in sporadic failures
of WithdrawWithMarket, depending on the exchange relationship between the cToken and SOL.

1 // Add 1 to ensure we withdraw enough liquidity because
liquidity to collateral floors

2 let c_token amount = reserve

3 .collateral exchange rate()?

4 .liquidity to collateral(needed liquidity.saturating add(1))?

.min(ctx.accounts.vault collateral token account.amount);

(82}

Resolution

Sendit fixed the issue in commit b9d63b9509f5345ela6d5c244c5cdla701lbbcfe8 by moving the
saturating_add after the call to liquidity to collateral. Neodyme verified the fix.

18/26

Security Review - Sendit Lending Protocol

[ND-SDIT-IN-01] DepositReserveLiquidity: No address check on

user_incentive_info

Severity Impact Affected Component Status

None Liquidity Deposits Resolved

In DepositReservelLiquidity, the lending contract does not explicitly validate that the correct PDA
was provided for user_incentive info in cases where the account already contains data. This is not
a security issue because update user incentive ctoken always writes to user incentive info,
causing the Solana runtime to implicitly enforce that the account is program-owned. However, for
correctness and consistency, the PDA should be validated on every call, not only when the account is
newly created.

1 if user_incentive info.data is empty() && reserve.config.loan to value ratio

== 0 {
2 // Find and validate user incentive data PDA
3 let bump_seed = find and validate user incentive data address(
4 program id,
5 user transfer authority info.key,
6 reserve_info.key,
7 user_incentive info,
8)?;
9
10 // [.]
11}
Resolution

Sendit moved the address check in commit 9bd8e815bf4759d545a0a75282d303ab4d04c27a. Neodyme
verified the fix.

19/26

Security Review - Sendit Lending Protocol

[ND-SDIT-IN-02] Closed LiquidationMarks can be revived

Severity Impact Affected Component Status

None Liquidation marks Resolved

InCloseLiquidationMark, the program closes the LiquidationMark account by settingits lamports to
zero. This marks the account for garbage collection by the Solana runtime. However, since ownership
is not reassigned to the system program, an attacker could theoretically top up the account’s rent
after closure, preventing its cleanup. This does not introduce a security risk as MarkLiquidatable is
idempotent, but it is generally considered poor practice.

Resolution

Sendit addressed the issue by assigning the account back to the system program while closing the
account in commit 58420c0fa5d36409177a3109af6e38dff92526d2. Neodyme has verified the fix.

20/26

Security Review - Sendit Lending Protocol

[ND-SDIT-IN-03] DeployToMarket: Wrong token program

Severity Impact Affected Component Status

None cyield Resolved

The call to DepositReservelLiquidity in cyield’s DeployToMarket reuses the token program account
for both the token programand collateral token programfunction arguments,instead of using the
collateral token programaccount supplied.

Resolution

Sendit addressed the issue in commit 60d067a39bd0c5943c37chb7ff7f6T4abe3028516. Neodyme has
verified the fix.

21/26

Security Review - Sendit Lending Protocol

About Neodyme

Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully under-
stand every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competi-
tions, called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption,
reverse engineering complicated algorithms, and much more. Through the years, many of our team
members have won national and international hacking competitions, and keep ranking highly among
some of the hardest CTF events worldwide. In 2020, some of our members started experimenting
with validators and became active members in the early Solana community. With the prospect of an
interesting technical challenge and bug bounties, they quickly encouraged others from our CTF team
to look for security issues in Solana. The result was so successful that after reporting several bugs, in
2021, the Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

22/26

Security Review - Sendit Lending Protocol

Methodology

We are not checklist auditors.

In fact, we pride ourselves on that. We adapt our approach to each audit, investing considerable time
into understanding the program upfront and exploring its expected behavior, edge cases, invariants,
and ways in which the latter could be violated.

We use our uniquely deep knowledge of Solana internals, and our years-long experience in auditing
Solana programs to find bugs that others miss. We often extend our audit to cover off-chain compo-
nentsin order to see how users could be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list here.

Select Common Vulnerabilities

Our most common findings are still specific to Solana itself. Among these are vulnerabilities such as
the ones listed below:

« Insufficient validation, such as:
» Missing ownership checks
» Missing signer checks
» Signed invocation of unverified programs
» Account confusions
» Missing freeze authority checks
» Insufficient SPL account verification
» Dangerous user-controlled bumps
» Insufficient Anchor account linkage
+ Account reinitialization vulnerabilities
+ Account creation DoS
+ Redeployment with cross-instance confusion
+ Missing rent exemption assertion
« Casting truncation
+ Arithmetic over- or underflows
» Numerical precision and rounding errors
+ Anchor pitfalls, such as accounts not being reloaded
» Non-unique seeds
+ Issues arising from CPI recursion
+ Log truncation vulnerabilities
+ Vulnerabilities specific to integration of Token Extensions, for example unexpected external
token hook calls

23/26

Security Review - Sendit Lending Protocol

Apart from such Solana-specific findings, some of the most common vulnerabilities relate to the
general logical structure of the contract. Specifically, such findings may be:

+ Errorsin business logic

« Mismatches between contract logic and project specifications

+ General denial-of-service attacks

+ Sybil attacks

+ Incorrect usage of on-chain randomness

+ Contract-specific low-level vulnerabilities, such as incorrect account memory management
+ Vulnerability to economic attacks

+ Allowing front-running or sandwiching attacks

Miscellaneous other findings are also routinely checked for, among them:
+ Unsafe design decisions that might lead to vulnerabilities being introduced in the future
» Additionally, any findings related to code consistency and cleanliness
+ Rug pull mechanisms or hidden backdoors

Often, we also examine the authority structure of a contract, investigating their security as well as the
impact on contract operations should they be compromised.

Over the years, we have found hundreds of high and critical severity findings, many of which are highly
nontrivial and do not fall into the strict categories above. This is why our approach has always gone
way beyond simply checking for common vulnerabilities. We believe that the only way to truly secure
a programis a deep and tailored exploration that covers all aspects of a program, from small low-level
bugs to complex logical vulnerabilities.

24/ 26

Security Review - Sendit Lending Protocol

Vulnerability Severity Rating

We use the following guideline to classify the severity of vulnerabilities. Note that we assess each
vulnerability on an individual basis and may deviate from these guidelines in cases where it is well-
founded. In such cases, we always provide an explanation.

Severity Description

CRITICAL Vulnerabilities that will likely cause loss of funds. An attacker can trigger them
with little or no preparation, or they are expected to happen accidentally.
Effects are difficult to undo after they are detected.

Bugs that can be used to set up loss of funds in a more limited capacity, or to
render the contract unusable.

Bugs that do not cause direct loss of funds but that may lead to other
exploitable mechanisms, or that could be exploited to render the contract
partially unusable.

Bugs that do not have a significant immediate impact and could be fixed easily
after detection.

Bugs or inconsistencies that have little to no security impact, but are still
noteworthy.

Additionally, we often provide the client with a list of nit-picks, i.e. findings whose severity lies below
Informational. In general, these findings are not part of the report.

25/26

Security Review - Sendit Lending Protocol

Neodyme AG

Dirnismaning 55
Halle 13

85748 Garching
Germany

E-Mail: contact@neodyme.io

https://neodyme.io

26/26

mailto:contact@neodyme.io
https://neodyme.io

	Executive Summary
	Introduction
	Summary of Findings

	Scope
	Project Overview
	Functionality
	lending
	cyield
	myield

	Instructions
	New instructions in lending
	cyield
	myield

	Findings
	[ND-SDIT-CR-01] RedeemReserveCollateral does not check incentive accounts
	Resolution

	[ND-SDIT-MD-01] LiquidationMarks can be DoSed
	Resolution

	[ND-SDIT-MD-02] Vault incentive account can be DoSed
	Resolution

	[ND-SDIT-LO-01] DepositReserveLiquidity can be DoSed
	Resolution

	[ND-SDIT-LO-02] InitReserve is permissionless
	Resolution

	[ND-SDIT-LO-03] InitReserve: Fee owner constraint can be bypassed
	Resolution

	[ND-SDIT-LO-04] Incorrect incentive calculation
	Resolution

	[ND-SDIT-LO-05] WithdrawWithMarket: Flooring of transferred liquidity can fail
	Resolution

	[ND-SDIT-IN-01] DepositReserveLiquidity: No address check on user_incentive_info
	Resolution

	[ND-SDIT-IN-02] Closed LiquidationMarks can be revived
	Resolution

	[ND-SDIT-IN-03] DeployToMarket: Wrong token program
	Resolution

	About Neodyme
	Methodology
	Select Common Vulnerabilities

	Vulnerability Severity Rating

