
Security Audit - Squads v4

conducted by Neodyme AG

Lead Auditor: Sebastian Fritsch

Second Auditor: Mathias Scherer

Administrative Lead: Thomas Lambertz

December 10, 2024

Security Audit - Squads v4

Table of Contents
1 Executive Summary 3

Introduction 42
Summary of Findings . 4

3 Scope 5

Project Overview 6
Instructions . 6
Transaction Buffers . 6

4

Custom allocator . 7

Findings 85
[ND-SQD3-LO-01] TransactionBuffer feature can be DoSed 9

Appendices

A About Neodyme 11

Methodology 12B
Select Common Vulnerabilities . 12

C Vulnerability Severity Rating 14

2 / 15

Security Audit - Squads v4

1 Executive Summary
Neodyme audited Squads’ on-chain multisig v4 program from October 2024 until November 2024.
This audit report amends the report from February 6th 2024, .

The auditors found that the updates kept the clean design, security and far-above-standard code
quality of the existing program. According to Neodymes Rating Classification, 1 security relevant
and 0 informational were found. The number of findings identified throughout the audit, grouped by
severity, can be seen in Figure 1.

Critical 0

High 0

Medium 0

Low 1Se
ve

rit
y

Informational 0

Figure 1: Overview of Findings

The auditors reported all findings to the Squads developers, who addressed them promptly. The
security fixes were verified for completeness by Neodyme. In addition to these findings, Neodyme
delivered the Squads team a list of nit-picks and additional notes that are not part of this report.

3 / 15

https://github.com/Squads-Protocol/v4/blob/main/audits/neodyme_squads_v4_report_2024.pdf

Security Audit - Squads v4

2 Introduction
From October 2024 until November 2024, Squads engaged Neodyme to do a detailed security analysis
of their Squads v4 multisig. Two senior security researchers from Neodyme conducted independent
full audits of the contract between the 5th of October 2024 and the 11th of November 2024. Both
auditors have a long track record of finding critical and other vulnerabilities in Solana programs, as
well as in Solana’s core code itself.

The audit focused on the security of the updates, that Squads implemented since the previous audit.
In the following sections, the report details the audit’s scope, gives a brief overview over the updates
and the corresponding new instructions since the last audit . Lastly it goes into detail about the
security relevant findings of this audit.

Neodyme would like to emphasize the high quality of Squads’s work. Squads’s team always
responded quickly and competently to findings of any kind. Their in-depth knowledge of multisig
programs was apparent during all stages of the cooperation, including excellent and crucial knowl-
edge of the Solana CPI runtime. Evidently, Squads invested significant effort and resources into their
product’s security. Some technical debt was apparent in the contract, but only to a minor extent.
Their code quality is far above standard, as the code is well documented, naming schemes are clear,
and the overall architecture of the program is clean and coherent. The contract’s source code has no
unnecessary dependencies, relying mainly on the well-established Anchor framework.

Summary of Findings

All found issues were quickly remediated. In total, the audit revealed:

0 critical 0 high-severity 0 medium-severity 1 low-severity 0 informational

issues.

4 / 15

https://neodyme.io

Security Audit - Squads v4

3 Scope
The contract audit’s scope comprised of two major components:

• Implementation security of the code
• Security of the overall design including the updates

Neodyme considers the source code, located at https://github.com/Squads-Protocol/v4/tree/main/
programs/squads_multisig_program, in scope for this audit. Third-party dependencies are not in
scope. Squads only relies on the Anchor library and the spl-token program, all of which are well-
established. During the audit, minor changes and fixes were made by Squads, which the auditors also
reviewed in-depth.

Relevant source code revisions are:

• ca85338f6cfcfd619a1b4f5570f53d3d6d2d4335 · Start of the audit
• dcac867070a3073929e2240a053780c324f4c29f · Last reviewed revision

We verified that the last reviewed version corresponds to the deployed version with program hash
d48660833989ecea3145ff726164fe640bd90696f03ce00dfd0cda258cbf2fac.

5 / 15

https://github.com/Squads-Protocol/v4/tree/main/programs/squads_multisig_program
https://github.com/Squads-Protocol/v4/tree/main/programs/squads_multisig_program

Security Audit - Squads v4

4 Project Overview
This section briefly outlines the updates proposed to Squads multisig v4. A more comprehensive
overview of the program functionality can be found in our previous report of the Squads multisig v4
here and here.

Instructions

The updates since the last audit added a total of 4 instructions, which we briefly summarize here.

Instruction Category Summary

TransactionBufferCreate Initiator-Only Creates a new TransactionBuffer bound
to the initiator (creator) with a predefined
length and data hash

TransactionBufferExtend Creator-Only Writes data to the TransactionBuffer

TransactionBufferClose Creator-Only Closes the TransactionBuffer

VaultTransactionCreateFromBuffer Creator-Only Creates a new VaultTransaction with the
TransactionBuffer data as transaction data

Transaction Buffers

Due to the way Solana formats transactions, only a limited number of bytes can be passed to a
program as instruction arguments. This can result in situations where the proposed transaction for
the multisig no longer fits within the original VaultTransactionCreate instruction.

To address this, Squads introduced the TransactionBuffer feature, allowing a multisig member to
push proposed transaction data onto the chain in multiple iterations. When a member initializes a
TransactionBuffer using TransactionBufferCreate, they must pre-define both the length and hash
of the transaction data being pushed.

After that, the creator can incrementally add to the TransactionBuffer with
TransactionBufferExtend. If all the data is correctly written – meaning the length and predefined
hash match the actual written data – the creator can then use VaultTransactionCreateFromBuffer
to convert the buffer into a proposed VaultTransaction.

A TransactionBuffer is derived using the following seeds:

1 [

2 SEED_PREFIX, // b"multisig"

6 / 15

https://github.com/Squads-Protocol/v4/blob/main/audits/neodyme_squads_v4_report_2024.pdf
https://github.com/Squads-Protocol/v4/blob/main/audits/neodyme_squads_v4_report.pdf

Security Audit - Squads v4

3 multisig.key().as_ref(),

4 SEED_TRANSACTION_BUFFER, // b"transaction_buffer"

5 creator.key().as_ref(),

6 &args.buffer_index.to_le_bytes() //u8

7]

This means, every member with the Initiate permission (the creator) can maintain up to 256 buffers.

Custom allocator

In 2023, Solana introduced the ComputeBudget native program. One of its features, RequestHeapFrame,
lets developers increase the heap size within the current transaction execution context. By default,
the bump allocator allocates memory in reverse, starting from the default HEAP_LENGTH of 32 KiB. This
means that a larger heap (and therefore a larger HEAP_LENGTH) requested via RequestHeapFrame can’t
be used by the default allocator.

To address this, Squads opted to implement a custom heap allocator for their program, which follows
a forward allocation strategy. In this approach, allocation begins at the HEAP_START_ADDRESS, and
subsequent allocations are made progressively higher in the address space. This forward allocation
is fully compatible with RequestHeapFrame, but also works with the default heap layout.

7 / 15

Security Audit - Squads v4

5 Findings
This section outlines all of our findings. They are classified into one of five severity levels, detailed in
Appendix C. In addition to these findings, Neodyme delivered the Squads team a list of nit-picks and
additional notes which are not part of this report.

All findings are listed in Table 2 and further described in the following sections.

Identifier Name Severity Status

ND-SQD3-LO-01 TransactionBuffer feature can be DoSed LOW Resolved

Table 2: Findings

8 / 15

Security Audit - Squads v4

[ND-SQD3-LO-01] TransactionBuffer feature can be DoSed

Severity Impact Affected Component Status

LOW TransactionBuffers are rendered unusable TransactionBuffer Resolved

Every multisig member with the Initiate permission can create TransactionBuffer accounts to
build a transaction. Those accounts were derived in the following manner:

1 #[account(

2 init,

3 payer = rent_payer,

4 space = TransactionBuffer::size(args.final_buffer_size)?,

5 seeds = [

6 SEED_PREFIX,

7 multisig.key().as_ref(),

8 SEED_TRANSACTION_BUFFER,

9 &args.buffer_index.to_le_bytes(), //u8

10],

11 bump

12)]

13 pub transaction_buffer: Account<'info, TransactionBuffer>,

This means, every multisig was able to have 256 different TransactionBuffer accounts.

These accounts can be closed in two ways:

1. By the buffer creator using the TransactionBufferClose instruction.
2. By any member with the Initiate permission via the VaultTransactionCreateFromBuffer

instruction. For this method, the data in the buffer must also hash to a final_buffer_hash
defined by the buffer creator as well as having the same size as the predefined final_size.

9 / 15

Security Audit - Squads v4

If a malicious member with the Initiate permission writes data to a buffer that does not match the
predefined hash, no one except the malicious actor can close that account. By filling all 256 buffer
accounts with invalid data, this effectively results in a denial-of-service (DoS) attack on the buffer
account feature.

Resolution

Squads quickly remediated this issue in commit: 74fafb1ba7890d8e54cf13673c6cd7a3cf4c764a. The
TransactionBuffer PDA is now additionally derived with the creator pubkey, which allows every
member with the Initiate permission to have 256 personal buffers instead of 256 multisig-wide
buffers.

10 / 15

Security Audit - Squads v4

A About Neodyme
Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully under-
stand every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competi-
tions, called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption,
reverse engineering complicated algorithms, and much more. Through the years, many of our team
members have won national and international hacking competitions, and keep ranking highly among
some of the hardest CTF events worldwide. In 2020, some of our members started experimenting
with validators and became active members in the early Solana community. With the prospect of an
interesting technical challenge and bug bounties, they quickly encouraged others from our CTF team
to look for security issues in Solana. The result was so successful that after reporting several bugs, in
2021, the Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

11 / 15

Security Audit - Squads v4

B Methodology
We are not checklist auditors.

In fact, we pride ourselves on that. We adapt our approach to each audit, investing considerable time
into understanding the program upfront and exploring its expected behavior, edge cases, invariants,
and ways in which the latter could be violated.

We use our uniquely deep knowledge of Solana internals, and our years-long experience in auditing
Solana programs to find bugs that others miss. We often extend our audit to cover off-chain compo-
nents in order to see how users could be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list here.

Select Common Vulnerabilities

Our most common findings are still specific to Solana itself. Among these are vulnerabilities such as
the ones listed below:

• Insufficient validation, such as:
‣ Missing ownership checks
‣ Missing signer checks
‣ Signed invocation of unverified programs
‣ Account confusions
‣ Missing freeze authority checks
‣ Insufficient SPL account verification
‣ Dangerous user-controlled bumps
‣ Insufficient Anchor account linkage

• Account reinitialization vulnerabilities
• Account creation DoS
• Redeployment with cross-instance confusion
• Missing rent exemption assertion
• Casting truncation
• Arithmetic over- or underflows
• Numerical precision and rounding errors
• Anchor pitfalls, such as accounts not being reloaded
• Non-unique seeds
• Issues arising from CPI recursion
• Log truncation vulnerabilities
• Vulnerabilities specific to integration of Token Extensions, for example unexpected external

token hook calls

12 / 15

Security Audit - Squads v4

Apart from such Solana-specific findings, some of the most common vulnerabilities relate to the
general logical structure of the contract. Specifically, such findings may be:

• Errors in business logic
• Mismatches between contract logic and project specifications
• General denial-of-service attacks
• Sybil attacks
• Incorrect usage of on-chain randomness
• Contract-specific low-level vulnerabilities, such as incorrect account memory management
• Vulnerability to economic attacks
• Allowing front-running or sandwiching attacks

Miscellaneous other findings are also routinely checked for, among them:
• Unsafe design decisions that might lead to vulnerabilities being introduced in the future

‣ Additionally, any findings related to code consistency and cleanliness
• Rug pull mechanisms or hidden backdoors

Often, we also examine the authority structure of a contract, investigating their security as well as the
impact on contract operations should they be compromised.

Over the years, we have found hundreds of high and critical severity findings, many of which are highly
nontrivial and do not fall into the strict categories above. This is why our approach has always gone
way beyond simply checking for common vulnerabilities. We believe that the only way to truly secure
a program is a deep and tailored exploration that covers all aspects of a program, from small low-level
bugs to complex logical vulnerabilities.

13 / 15

Security Audit - Squads v4

C Vulnerability Severity Rating
We use the following guideline to classify the severity of vulnerabilities. Note that we assess each
vulnerability on an individual basis and may deviate from these guidelines in cases where it is well-
founded. In such cases, we always provide an explanation.

Severity Description

CRITICAL Vulnerabilities that will likely cause loss of funds. An attacker can trigger them
with little or no preparation, or they are expected to happen accidentally.
Effects are difficult to undo after they are detected.

HIGH Bugs that can be used to set up loss of funds in a more limited capacity, or to
render the contract unusable.

MEDIUM Bugs that do not cause direct loss of funds but that may lead to other
exploitable mechanisms, or that could be exploited to render the contract
partially unusable.

LOW Bugs that do not have a significant immediate impact and could be fixed easily
after detection.

INFORMATIONAL Bugs or inconsistencies that have little to no security impact, but are still
noteworthy.

Additionally, we often provide the client with a list of nit-picks, i.e. findings whose severity lies below
Informational. In general, these findings are not part of the report.

14 / 15

Security Audit - Squads v4

Neodyme AG

Dirnismaning 55
Halle 13
85748 Garching
Germany

E-Mail: contact@neodyme.io

https://neodyme.io

15 / 15

mailto:contact@neodyme.io
https://neodyme.io

	Executive Summary
	Introduction
	Summary of Findings

	Scope
	Project Overview
	Instructions
	Transaction Buffers
	Custom allocator

	Findings
	[ND-SQD3-LO-01] TransactionBuffer feature can be DoSed
	Resolution

	About Neodyme
	Methodology
	Select Common Vulnerabilities

	Vulnerability Severity Rating

