Security Audit - Quantus Network's Dilithium and
HDWallet

conducted by Neodyme AG

Lead Auditor: Ruben Gonzalez

Second Auditor: Jasper Slusallek

December 15,2025

Security Audit - Quantus Network's Dilithium and HDWallet

Table of Contents

1 Executive Summary

N

Introduction

Summaryof Findings e e

3 Scope

H

Dilithium .
HDWallet .

()]

Findings

[ND-QNPQC-
[ND-QNPQC-
[ND-QNPQC-
[ND-QNPQC-
[ND-QNPQC-
[ND-QNPQC-
[ND-QNPQC-
[ND-QNPQC-
[ND-QNPQC-
[ND-QNPQC-
[ND-QNPQC-
[ND-QNPQC -
[ND-QNPQC-
[ND-QNPQC-
[ND-QNPQC -

Appendices

Project Overview

CR-01] Domain SeparationBypass e
HI-01] InsecureHash Function
HI-02] PermittingLow Entropy
MD-01] Missing Drop on SensitiveValues
MD-02] Missing Entropy Check e
MD-03] Mass Use of Heap Allocation
MD-04] Dependencies in CryptographicCore
MD-05] DOSVectorinLibrary o
L0-01] Reliance on BlackBox for ConstantTime
L0-02] Misleading Documentation L.
L0-03] Incorrect Documentation o o
L0-04] CT dependence on unprotectedvariable
L0-05] Non-ConstantRuntime
IN-01] ChaCha20 Arithmetic on SensitiveSeeds
IN-02] Elliptic Curve Arithemticon ML-DSASeeds

A About Neodyme

B Methodology

C Vulnerability Severity Rating

11
12
13
14
15
16
17
18
19
20
21
23
24
25

26

27

28

2/29

Security Audit - Quantus Network's Dilithium and HDWallet

Executive Summary

Neodyme audited Quantus Network’s Dilithium and HDWallet implementation from November 2025
until December 2025.

The implementations form the cryptographic core of the entire Quantus Network. Due to the founda-
tional relevance to overall security, both components were audited in-depth.

The audit was conducted in an early stage of Quantus Network’s implementation efforts. Some com-
ponents were indeed not production-ready at the start of the audit, but made great strides towards
maturity over its course.

During the audit, 13 security relevant and 2 informational findings were identified. Figure 1 shows
all identified findings grouped by severity.

crticat [N
> High 2
g Medium [s
(]
(V2]
Informational 2

Figure 1: Overview of Findings

The auditors reported all findings to the Quantus Network developers, who addressed them promptly.
Security fixes for the findings were verified for completeness by Neodyme. In addition to these find-
ings, Neodyme delivered the Quantus Network team further nit-picks and implementation guidance
that are not part of this report.

3/29

Security Audit - Quantus Network's Dilithium and HDWallet

Introduction

Quantus Network engaged Neodyme to do a detailed security analysis of their Dilithium and HDWallet
implementations from November 2025 until December 2025. Both components are described in
Section 4. Two senior security researchers from Neodyme conducted the audit of both components
between the 1st of November 2025 and the 15th of December 2025. Combined, both auditors have
a long track record of finding critical vulnerabilities in various blockchain ecosystems and extensive
knowledge of implementing cryptographic primitives. The lead auditor pursued a PhD in post-
quantum cryptography and has published multiple peer-reviewed papers, online publications, and
code on the topic. He has further consulted and trained developers and security professionals on
the subject at the leading cybersecurity conferences. The second auditor has found dozens of critical
vulnerabilities in various blockchain ecosystems, thereby protecting at least $3B of funds at risk.

The audit focused on implementation security of the components’ software written in Rust.

In the following sections, we detail the audit’s scope, introduce context by summarizing implemen-
tation-relevant background and discuss findings.

Summary of Findings

Allidentified and reported issues were quickly remediated by the Quantus Network team.

In total, the audit revealed:
1 critical * 2 high-severity ¢ 5 medium-severity * 5 low-severity ¢ 2 informational

issues.

4/29

https://neodyme.io

Security Audit - Quantus Network's Dilithium and HDWallet

Scope

The audit’s scope comprised of two components written in the Rust programming language:

+ ADilithium post-quantum signature algorithm
+ Ahierarchical, deterministic wallet based on the Dilithium implementation

The audit focused on implementation security of the software. Explicitly not included in the audit’s
threat model are hardware-based attacks. These include, but are not limited to, fault injection attacks,
speculative execution attacks, power analysis or similar side channels. Their mitigation requires
knowledge of the specific targeted hardware architecture, which was not available at the time of
writing. The audit’s scope therefore only includes the software security on source code level.

Neodyme considers the source code, located at https://github.com/Quantus-Network/qp-rusty-
crystals/, in scope for this audit. Third-party dependencies are not in scope. During the audit, changes
and fixes were made by Quantus Network, which the auditors also reviewed in-depth.

Relevant source code revisions are:

o 784b3b65081e1624dc74d8cchb01986e306fe6b7c - Start of the audit
» 8bbe920dc5bfe88fa40028eblea9baede39a600c - Last reviewed revision

5/29

https://github.com/Quantus-Network/qp-rusty-crystals/
https://github.com/Quantus-Network/qp-rusty-crystals/

Security Audit - Quantus Network's Dilithium and HDWallet

Project Overview

This section briefly outlines aspects of Dilithium and HDWallet’s background, functionality, design,
and architecture necessary to comprehend the findings presented in the next section.

Dilithium

Dilithium is a structured-lattice-based signature algorithm that was recently standardized by the
National Institute of Standards and Technology (NIST) under the name Module-Lattice-Based Digital
Signature Algorithm (ML-DSA). From here on out it is therefore referred to as ML-DSA.

ML-DSA is a post-quantum algorithm, aiming for security against attackers in possession of both clas-
sical and quantum computers. Traditional signature algorithms such as Ed25519 or RSA are known
to be entirely broken upon the arrival of a large quantum computer. As development towards large
quantum computers has accelerated significantly in past years, quantum security has become a major
concern.

Quantus Network has implemented ML-DSA in its highest, standardized parameters, referred to as ML-
DSA-87. ML-DSA-87 has a claimed security strength of NIST Level 5, meaning an attack would require
at least as many computational resources as an exhaustive key search on a 256 bit key block cipher.
Informally, this is referred to as 256 bits of security and forms the minimum security bound for the
audit.

Inits structured lattice, ML-DSA-87 employs the polynomial ring Z,, [X]/(X** 4 1) with p = 8380417.
That is, it operates on vectors of polynomials of degree at most 255 with coefficients in Z,,. A core
component of ML-DSA implementations is the Number Theoretic Transform (NTT), vastly accelerating
operations within the lattice. Further specifics can be found in the original publication [pg-crystals].

Quantus Network’s implementation is written in pure Rust and does therefore not include assembly
code commonly found in other Dilithium implementations. Implementation in assembly allows for
the use of vector instructions on modern desktop CPUs, resulting in performance gains. However, as
stated goals of the audited implementation include portability and memory safety, such optimizations
were not included. The audited implementation therefore has a conservative coding style that — in
regards to NTT and ring operations — closely resembles the official Dilithium reference implementa-
tion and the ML-DSA standard.

Constant Time Requirements

An opaque aspect of Dilithium implementation is the necessary relaxation of the usually mandated
constant time property of code. Ideally, traditional signature algorithms have a permanently constant
runtime. That means, the algorithms runtime can by no means be influenced by sensitive values, such
as key material or nonce values. This serves to protect the implementation from leaking sensitive
values through runtime measurements (i.e. timing-based side channels).

6/29

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf

Security Audit - Quantus Network's Dilithium and HDWallet

Dilithium internally uses rejection sampling to derive values within publicly known bounds from key
material. This makes the code inherently variable in runtime. Seemingly, the runtime is even directly
influenced by the secret key material.

However, as the algorithms runtime only reflects how long it took to sample suitable values that lie
within publicly known bounds, this does notimpact security. Hence, strict constant time for the overall
algorithm is not required. In parts of the implementation that directly handle key material however,
itis required.

HDWallet

A hierarchical deterministic (HD) wallet is a cryptocurrency wallet that uses a single master seed to
deterministically generate a structured tree of key pairs, allowing subaddresses to be derived repro-
ducibly. This allows an organization to manage and securely backup many addresses with just one
seed. Typically, subtrees of the overall structured trees are delegated to members of the organization,
which in turn can then manage and organize addresses derived from their subtree.

Quantus Network’s implementation is largely inspired by the Bitcoin Improvement Proposals
(BIPs) Hierarchical Deterministic Wallets [BIP-0032], Multi-Account Hierarchy for Deterministic Wallets
[BIP-0044] and Mnemonic Code for Generating Deterministic Keys [BIP-0039].

As these BIPs make heavy use of the distributive property of groups of elliptic curve points, they can
not be directly applied to a Wallet managing Dilithium-based addresses. For example, non-hardened
keys can’t be used for computing parent public keys from child keys. This forces Quantus Network’s
HDWallet to function different from the aforementioned BIPs. Specifically, only hardened keys are
supported making upwards tree traversal impractical. Other BIP aspects however, such as path level
definitions, are adhered to.

7/29

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

Security Audit - Quantus Network's Dilithium and HDWallet
[] []
Findings

This section details all findings encountered during the audit. They are classified into one of five
severity levels, detailed in Appendix C. In addition to these findings, Neodyme delivered the Quantus
Network team further nit-picks and implementation guidance that are not part of this report.

All findings are listed in Table 1 and further described in the following subsections.

Identifier Name Severity Status
ND-QNPQC-CR-01 Domain Separation Bypass Resolved
ND-QNPQC-HI-01 Insecure Hash Function Resolved
ND-QNPQC-HI-02 Permitting Low Entropy Resolved
ND-QNPQC-MD-01 Missing Drop on Sensitive Values m Resolved
ND-QNPQC-MD-02 Missing Entropy Check m Resolved
ND-QNPQC-MD-03 Mass Use of Heap Allocation m Resolved
ND-QNPQC-MD-04 Dependencies in Cryptographic Core M Resolved
ND-QNPQC-MD-05 DOS Vector in Library m Resolved
ND-QNPQC-LO0-01 Reliance on BlackBox for Constant Time Resolved
ND-QNPQC-L0-02 Misleading Documentation Low Resolved
ND-QNPQC-LO0-03 Incorrect Documentation LOW Resolved
ND-QNPQC-L0-04 CT dependence on unprotected variable HEe)') Acknowledged
ND-QNPQC-LO0-05 Non-Constant Runtime LOW Acknowledged
ND-QNPQC-IN-01 ChaCha20 Arithmetic on Sensitive Seeds Resolved
ND-QNPQC-IN-02 Elliptic Curve Arithemtic on ML-DSA Resolved

Seeds

Table 1: Findings

8/29

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-CR-01] Domain Separation Bypass

Severity Impact Affected Component Status
o1 h[e7.\E Domain Separation Break ML-DSA Resolved

Theimplementation always applies the zero context, even if context is given. This occurs as the signing
context always prefixes two null bytes, stating the message is signed under no context, even if the
message was already formatted under a context:

1 /// Compute message hash and signing randomness

2 fn prepare _signing context(

3 unpacked sk: &UnpackedSecretKey,

4 message: &[u8],

5 hedge randomness: Option<[u8; params::SEEDBYTES]>,

6) -> SigningContext {

7 // Compute message hash p = H(tr || pre || msg) where pre = (0, 0) for pure
signatures

8 let mut keccak state = fips202::KeccakState::default();

9 fips202::shake256 absorb(&mut keccak state, &unpacked sk.public key hash tr,
params::TR BYTES);

10 let context prefix = [Qu8, Qu8]; // (domain sep=0, context len=0) for pure
signatures

11 fips202: :shake256 absorb(&mut keccak state, &context prefix, 2);

Due to this behavior, the supplied context is then interpreted as part of the message. This breaks
domain separation introduced through contexts, which can be leveraged for signature forging.

Proof of Concept

Poof of concept code to illustrate this problem:

1 Tlet entropy = get random bytes();
let ml87 keypair = ml dsa 87::Keypair::generate(&entropy);

// Message to be signed under context X
let test msg = b"stack usage test message";
// Signing context

let test ctx = b"X";

// Malicious message without context

O 00 NN O Ul W

let test msg fake ctx = b"\x00\x01Xstack usage test message";

U
- O

let ml87 _sig = ml87 keypair.sign(test msg, Some(test ctx), None);

_ e
w N

// This should work
assert!(ml87 keypair.verify(test msg, &ml87 sig, Some(test ctx)));

_
S

9/29

Security Audit - Quantus Network's Dilithium and HDWallet

15
16 // This should NOT work
17 assert!(ml87 keypair.verify(test msg fake ctx, &ml87 sig, None));

Resolution
The Quantus Network team resolved the issue by removing the falsely-applied zero context.

This finding was fixed by commit bef994d292f976c2e711a4f39cf56527ceecbc40.

10/29

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-HI-01] Insecure Hash Function

Severity Impact Affected Component Status
Reduced Security ML-DSA Resolved

The implementation offers a HashML-DSA-compatible interface for pre-hashing inputs. This interface
is described in [ML-DSA].

In the code base, the SHA256 hash function for this purpose:

1 pub fn prehash sign(

2 &self,

3 msg: &[u8],

4 ctx: Option<&[u8]>,

5 hedge: Option<[u8; params::SEEDBYTES]>,

6 ph: crate::PH,

7) -> Option<Signature> {

8 let mut oid = [Ou8; 11];

9 let mut phm: Vec<u8> = Vec::new();

10 match ph {

11 crate: :PH: :SHA256 => {

12 oid.copy from slice(&[

13 0x06, 0x09, Ox60, Ox86, 0x48, 0x01, 0x65, 0x03, O0x04, 0x02, 0x01,
14 1);

15 phm.extend from slice(Sha256::digest(msg).as slice());
16 },

This is problematic as the implementation specifically targets NIST security level 5 (ML-DSA-87). The
HashML-DSA security, however, is strictly dependent (a.o.) on the collision resistance of the underlying
hash function used (see [ML-DSA] section 5.4). SHA256 has a collision resistance of approximately 128
bit and therefore reduces the algorithms security to that of NIST level 2. It is noteworthy that SHA256
is not insecure or broken, but offers less security than the targeted security level assuming a quantum
attacker.

Resolution
The Quantus Network team removed the HashML-DSA compatibility layer from their code base.

This finding was fixed by commit 666c4967bfc5ac04c1f9205f11c60916895e5e79.

11/29

https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-HI-02] Permitting Low Entropy

Severity Impact Affected Component Status
Weak Keys HDWallet Resolved

The generate _mnemonic function within HDWallet, despite requiring 32 bytes of entropy as input,
allows shorter output mnemonics:

1 pub fn generate mnemonic(word count: usize, seed: [u8; 32]) -> Result<String,
HDLatticeError> {
2 // Calculate entropy bytes needed (12 words = 16 bytes, 24 words = 32

bytes)
3 let bits = match word count {
4 12 => 128,
5 15 => 160,
6 18 => 192,
7 21 => 224,
8 24 => 256,
9 ~ => return Err(HDLatticeError::BadEntropyBitCount(word count)),
10 };

This makes it possible to generate mnemonics with 128 bits of entropy, whereas 256 bits are required
for securely generating ML-DSA-87 keys.

Resolution
The Quantus Network team resolved the issue by removing support for too short mnemonics.

This finding was fixed by commit dOee4aa627dbccaeaf100b6254ac33.

12/29

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-MD-01] Missing Drop on Sensitive Values

Severity Impact Affected Component Status
m Possible Key Leakage ML-DSA Resolved

Within ML-DSA as well as HDWallet, sensitive values are placed on heap and stack throughout
the program runtime, without being wiped after usage. The standard explicitly mandates clearing
memory and intermediate values after use.

Resolution

The Quantus Network team mitigated the issue by employing the locked [zeroize] Rust crate for
overwriting sensitive values as soon as they run out of scope.

This finding was mitigated by commits 5de7d0f5b27748f3fce704b3e85a0759019c0b3d and
8bbe920dc5bfe88fa40028ebleadbae4e39a600c.

13/29

https://docs.rs/zeroize/latest/zeroize/

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-MD-02] Missing Entropy Check

Severity Impact Affected Component Status
m Possible Weak Keys ML-DSA Resolved

The ML-DSA library does not to gather entropy for the user. It relies solely on the user to supply strong

key material:
1 pub fn generate(entropy: &[u8]) -> Keypair {
2 let mut pk = [Qu8; PUBLICKEYBYTES];
3 let mut sk = [Qu8; SECRETKEYBYTES];
4 crate::sign::keypair(&mut pk, &mut sk, entropy);
5 Keypair {
6 secret: SecretKey::from bytes(&sk).expect("Should never fail"),
7 public: PublicKey::from bytes(&pk).expect("Should never fail"),
8 }

9 }

This is an unconventional, although acceptable, choice for a cryptography primitive. However, there
are no safety measures in place.

Recommended Resolution
Either:
« gather entropy within library, e.g. by employing a fork of the [getrandom] crate

Or alternatively:

+ as a bare minimum, check that the supplied slice has a length of at least 32. This length
constitutes a necessary but not a sufficient criterion. The documentation should reflect his fact
and urge users to supply 32 bytes of high-quality entropy.

Resolution

The Quantus Network team mitigated the issue by performing a length check on the supplied entropy
parameter.

This finding was fixed by commit 925c9cffd53bfe5cb470a77613cab2626ab83519.

14/29

https://docs.rs/getrandom/latest/getrandom/

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-MD-03] Mass Use of Heap Allocation

Severity Impact Affected Component Status
m Possible Key Leakage and DOS vectors ML-DSA Resolved

The ML-DSA code relies heavily on Rust’s Box type for storing sensitive values on the heap. Customarily,
cryptography primitives should not be using the heap. While unavoidable in the implementation
of higher protocols (such as TLS), the primitives themselves do not need to allocate memory
dynamically. Using the heap introduces additional failure modes and timing variance.

Examples:

+ Some developers overwrite a worst-case amount of bytes on the stack after using a crypto
primitive - wiping all sensitive values from RAM. For heap-allocated values this is not possible
as they don’t form a contingent block of memory.

+ Usingthis library within a C code base leads to the risk of exposing sensitive values after memory
is freed, but not cleared, and then re-allocated.

Comments within the implementation imply that the heap was used to save on stack space for
resource-constrained devices. In these devices, using Box does not have an advantage over using the
stack, asthe heap consumes even more memory (due to heap meta data) and requires a heap allocator
to be available for the targeted platform.

Recommended Resolution

Drop use of heap allocation within ML-DSA altogether.

Resolution
The Quantus Network team resolved the issue by removing the usage of Box’ed values.

This finding was fixed by commit c7b118f04512c95bd7e8ae25b2ebe7eb0e58c918.

15/29

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-MD-04] Dependencies in Cryptographic Core

Severity Impact Affected Component Status
m Loss of Funds ML-DSA Resolved

The ML-DSA production build relies on dependencies from external authors.

Namely:
1 sha2 = { version = "0.10.8", default-features = false }
2 subtle = { version = "2.4.1", default-features = false }

Ideally, the implementation of a primitive that is supposed to safeguard large funds comes without
external dependencies. Thisis to avoid potential supply chain attacks. The sameis, though less severe,
true for HDWallet dependencies.

Of course this risk can also be accepted, but one should consider removing those dependencies or
forking the underlying source into a repository under control of the libraries authors. Relying on the
authors of these dependencies for the cryptographic core effectively gives them full access to funds.

Recommended Resolution

Remove subtle crate, together with constant time claims, altogether. Remove SHA2 altogether (see
also Section 5.2).

Alternatively, accept the risk, but mandate the locked versions of the dependencies for production
builds using cargo’s - - locked flag.

Resolution

The Quantus Network team resolved the issue by removing the two dependencies. The newly added
zeroize (see Section 5.4) dependency was locked (via Cargo.lock) and Cl builds use the --locked
flag. HDWallet dependencies underwent the same treatment.

This finding was fixed by commit 073ca390f524d70d68f171f99d56bca487d4f07d.

16/29

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-MD-05] DOS Vector in Library

Severity Impact Affected Component Status
m Denial of Service ML-DSA Resolved

The Dilithium implementation panics if a context larger than 255 bytes is supplied:

1 Some(x) => {

2 if x.len() > 255 {

3 panic! ("ctx length must not be larger than 255");
4

5

}

let x len = x.len();

This length check is necessary. However, the library should return an error value instead of raising a
panic. This could lead to Denial of Service attack vectors when the signature code is used in critical
code paths.

Resolution
The Quantus Network team resolved the issue by replacing the panic with returning an error value.

This finding was fixed by commit 93ed6c3f9278b4466c90ae58b913b66c483117f6.

17/29

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-LO0-01] Reliance on BlackBox for Constant Time

Severity Impact Affected Component Status
m Timing Leakage ML-DSA Resolved

The implementation tries to hide timing introduced through store operations with dummy writes to
a dummy variable. This variable is “protected” from removal due to compiler optimization (i.e. dead
store elimination) with the black_box Rust intrinsic:

1 // Prevent compiler from optimizing away dummy value
2 core::hint::black box(dummy value);

However, this type might be used for benchmarking but does not guarantee protection from the
compiler. The Rust documentation states in this regard: “As such, it must not be relied upon to
control critical program behavior. This also means that this function does not offer any guarantees for
cryptographic or security purposes.”.

This is not a critical vulnerability simply because ML-DSA does not require a constant time
implementation in that regard (see Section 4.1.1). However, the Quantus Network team set out to
introduce constant time execution and hence breaks its own guarantees.

Resolution
The Quantus Network team resolved the issue by rewriting the code and removing black_box.

This finding was fixed by commit cc15d7804d2ad870b1bdccd036fb324d2bbad1bf.

18/29

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-L0-02] Misleading Documentation

Severity Impact Affected Component Status
m Weak Keys ML-DSA Resolved

The ML-DSA implementation’s README specifies how the library should be used:

1 use gp_rusty crystals dilithium::ml dsa 87;

2

3 // Generate a keypair with entropy

4 let entropy = b"my random seed exactly 32 bytes!";
5

let keypair = ml dsa 87::Keypair::generate(entropy);

7 // Sign a message
& let message = b"Hello, post-quantum world!";
9 let signature = keypair.sign(message, None, None);

11 // Verify the signature
12 let is valid = keypair.verify(message, &signature, None);
13 assert!(is valid);

Experience shows that these kind of examples lead to library misuse. The examples imply that an
arbitrary string can be fed into the library to receive a secure key, as long as the input string is at least
32 bytes of length. However, this is of course not true, as the implementation does add entropy at all.
This finding is related to the finding presented in Section 5.5.

Recommended Resolution

The example code should show a more secure use. For example with the [getrandom] crate.

Resolution
The Quantus Network team resolved the issue by updating the example code.

This finding was fixed by commit 5f0c36c8dd98del3ba35dc014ee73dcaacf35c74.

19/29

https://crates.io/crates/getrandom

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-L0-03] Incorrect Documentation

Severity Impact Affected Component Status

LOW Library Misuse ML-DSA Resolved

Both the ML-DSA and HDWallet implementation feature line docs. Rust line docs are used to
automatically generate documentation based on comment string.

On multiple occasions in the code base, these line docs contain invalid claims. This could lead to the
library being used under wrong assumption, leading to vulnerabilities.

An example of this within the HDWallet claims:
1 /// Generates a new "WormholePair using secure system entropy (only
available with “std’).
Even though this is not the case, as the code does not add entropy at all.

Further examples scattered around the code base include:

+ polyveck is norm within bound docstringstatesthat0isreturned when the boundis adhered.
The (almost) opposite is true. A bool (true) is returned in that case.

+ reduce3?2 states that output is in range —6283009 <= r <= 6283007. whereas that bound should
be —6283008 <=r <= 6283008 (2"31-2/22-1-255* Q)

+ k_reduce states the output coefficients will be in [0, 2Q], when they are in [-6283008, 6283008]

« uniform_gammal says it samples uniformly in [-(GAMMAL - 1), GAMMAL1 - 1], when really it does
so in [-(GAMMAL-1), GAMMA1]

Recommended Resolution

Align code’s documentation and code.

Resolution
The Quantus Network team mitigated the issue by updating line documentation.

This finding was mitigated by commit d2480d278d087384231b4d3703d7463d42331598.

20/29

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-L0-04] CT dependence on unprotected variable

Severity Impact Affected Component Status

Low Timing Leakage ML-DSA Acknowledged

The ML-DSA ball sampling implementation uses a dummy buffer dummy buf to mask timing in regards
to the sampling:

1 let mut dummy buf = [0Qu8; fips202::SHAKE256 RATE];
let mut dummy pos = 0;

let mut pos: usize = 8;
c.coeffs.fill(0);
6 for i in (N - params::TAU)..N {

gl s W DN

7 let mut b: usize = 0;

8 let mut found = false;

9

10 // in vast majority of cases this outer loop will run exactly once

11 while !found {

12 // do 16 iterations no matter what for constant time

13 for in 0..16 {

14 if !'found {

15 if pos >= fips202::SHAKE256 RATE {

16 fips202: :shake256 squeezeblocks (&mut buf, 1, &mut state);

17 pos = 0;

18 }

19 b = buf[pos] as usize;

20 pos += 1;

21 if b <=1 {

22 found = true;

23 }

24 } else {

25 // Dummy operations when already found to maintain constant timing

26 if dummy pos >= fips202::SHAKE256 RATE {

27 fips202: :shake256 squeezeblocks (&mut dummy buf, 1, &mut
dummy state);

28 dummy pos = 0;

29 }

30 let dummy = dummy buf[dummy pos] as usize;

31 dummy pos += 1;

32 }

33 }

34 }

35

36 c.coeffs[i] = c.coeffs[b];

37 c.coeffs[b] 1 -2 * ((signs & 1) as i32);

21/29

Security Audit - Quantus Network's Dilithium and HDWallet

38 signs >>= 1;
39 }
40 3}

However, this variable is quickly going out of scope and is not used in any other way than stores. It
could therefore be eliminated by the compiler using dead store elimination. Timing can therefore still
leak. Additionally, the outer loop within that function could also execute more than once, with a low
but non-negligible probability.

This is not a critical vulnerability simply because ML-DSA does not require a constant time
implementation in that regard (see Section 4.1.1). However, the Quantus Network team set out to
introduce constant time execution and hence breaks its own guarantees.

Resolution

The Quantus Network team acknowledge the finding and has declared the code as acceptable within
their threat model.

22/29

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-L0-05] Non-Constant Runtime

Severity Impact Affected Component Status

Low Timing Leakage ML-DSA Acknowledged

The rejection sampling loop in the signature function is supposed to be constant time:

// this outer loop should run exactly once in the vast majority of cases
loop {
for in 0..MIN SIGNING ATTEMPTS {
// Generate masking vector and compute commitment

OOV SN

This property is introduced by the authors choice and not mandated by the standard (see
Section 4.1.1). However, in around 1% of executions (assuming random inputs), this is not true as the
code loops more than once.

This is not a critical vulnerability simply because ML-DSA does not require a constant time
implementation in that regard (see Section 4.1). However, the Quantus Network team set out to
introduce constant time execution and hence breaks its own guarantees.

Resolution

The Quantus Network team acknowledge the finding and has declared the code as acceptable within
their threat model.

23/29

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-IN-01] ChaCha20 Arithmetic on Sensitive Seeds

Severity Impact Affected Component Status
Increased Attack Surface ML-DSA Resolved

The code within generate_mnemonic employs a random number generator based on ChaCha20:

// Use seed to initiate chacha stream and fill it
// NOTE: chacha will "whiten" the entropy provided by the os
// if an attacker does not 100% control the os entropy, chacha
// will provide full entropy, due to avalanche effects
let mut chacha rng = ChaCha20Rng::from seed(seed);

GRS W N =

This usage, when done properly (see Section 5.3), is not in itself problematic. However, as the entropy
of the generated mnemonic depends entirely on the input seed, this call to ChaCha20 does not
improve security. To avoid dependence on external crates and a false sense of added security, this
usage could be avoided.

Resolution
The Quantus Network team resolved the issue by removing the ChaCha20 crate usage.

This finding was fixed by commit f368013bc099d1b457cd1058¢c77b4810e668c505.

24/29

Security Audit - Quantus Network's Dilithium and HDWallet

[ND-QNPQC-IN-02] Elliptic Curve Arithemtic on ML-DSA Seeds

Severity Impact Affected Component Status

Domain Seperation Break ML-DSA Resolved

The HDWallet code allows for non-hardened keys after layer 3:

1 for (index, element) in p.iter().enumerate() {

2 // Enforce hardened for the first three indices (purpose, coin type,
account) as per

3 // BIP44 standard. The reason being, we do not have derivable public keys
anyway, it

4 // does not work for dilithium key pairs.

5 if index < 3 && !element.is hardened() {

6 return Err(HDLatticeError::HardenedPathsOnly());

7 }

In principle, this does not break security in a quantum-attacker scenario. This is due to the fact, that
the computed (ECC) public keys are never outputted or used by the Wallet. The key derivation relies
only on the collision/preimage resistance of the SHA512 hashing performed.

However, if non-hardened keys are used, the employed (intermediate) seeds are used for elliptic curve
scalar multiplication. This opens the code up to unnecessary side channels and inefficiencies.

If only hardened keys would be allowed, no code path would apply elliptic curve arithmetic on these
sensitive values. As Dilithium offers no distributivity and the ECC public keys are never actually used,
enforcing hardened keys on all layers comes with no downsides.

Recommended Resolution

Exclusively use hardened keys within the Wallet.

Resolution
The Quantus Network team resolved the issue by removing the support for non-hardened keys.

This finding was fixed by commit 30e9ba21fc21edb8ec86758abf92a0987133de66.

25/29

Security Audit - Quantus Network's Dilithium and HDWallet

About Neodyme

Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully under-
stand every aspect of it. That’s us.

Our team never outsources audits. Having found bugs that could have lead to the loss of more than
$50B in TVLs, we believe that Neodyme hosts the most qualified auditors in this ecosystem.

All of our team members have a background in competitive hacking. During such hacking competi-
tions, called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption,
reverse engineering complicated algorithms, and much more. Through the years, many of our team
members have won national and international hacking competitions, and keep ranking highly among
some of the hardest CTF events worldwide. In 2020, some of our members started experimenting with
validators and became active members of the crypto community. With the prospect of an interesting
technical challenge and bug bounties, they quickly encouraged others from our CTF team to look for
security issues. And so, Neodyme was born.

26/29

Security Audit - Quantus Network's Dilithium and HDWallet

Methodology

We are not checklist auditors.

In fact, we pride ourselves on that. We adapt our approach to each audit, investing considerable time
into understanding the code upfront and exploring its expected behavior, edge cases, invariants, and
ways in which the latter could be violated.

We use our uniquely deep knowledge of internals, and our years-long experience in auditing code
bases to find bugs that others miss. We often extend our audit to cover off-chain components in order
to see how users could be tricked or the code affected by bugs in those components.

Over the years, we have found hundreds of high and critical severity findings, many of which are
highly nontrivial and do not fall into any strict category. This is why our approach has always gone
way beyond simply checking for common vulnerabilities. We believe that the only way to truly secure
a code base is a deep and tailored exploration that covers all its aspects, from small low-level bugs to
complex vulnerabilities.

27/29

Security Audit - Quantus Network's Dilithium and HDWallet

Vulnerability Severity Rating

We use the following guideline to classify the severity of vulnerabilities. Note that we assess each
vulnerability on an individual basis and may deviate from these guidelines in cases where it is well-
founded. In such cases, we always provide an explanation.

Severity Description

CRITICAL Vulnerabilities that will likely cause loss of funds. An attacker can trigger them
with little or no preparation, or they are expected to happen accidentally.
Effects are difficult to undo after they are detected.

Bugs that can be used to set up loss of funds in a more limited capacity, or to
render the program unusable.

Bugs that do not cause direct loss of funds but that may lead to other
exploitable mechanisms, or that could be exploited to render the program
partially unusable.

Bugs that do not have a significant immediate impact and could be fixed easily
after detection.

Bugs or inconsistencies that have little to no security impact, but are still
noteworthy.

Additionally, we often provide the client with a list of nit-picks, i.e. findings whose severity lies below
Informational. In general, these findings are not part of the report.

28/29

Security Audit - Quantus Network's Dilithium and HDWallet

Neodyme AG

Dirnismaning 55
Halle 13

85748 Garching
Germany

E-Mail: contact@neodyme.io

https://neodyme.io

29/29

mailto:contact@neodyme.io
https://neodyme.io

	Executive Summary
	Introduction
	Summary of Findings

	Scope
	Project Overview
	Dilithium
	Constant Time Requirements

	HDWallet

	Findings
	[ND-QNPQC-CR-01] Domain Separation Bypass
	Proof of Concept
	Resolution

	[ND-QNPQC-HI-01] Insecure Hash Function
	Resolution

	[ND-QNPQC-HI-02] Permitting Low Entropy
	Resolution

	[ND-QNPQC-MD-01] Missing Drop on Sensitive Values
	Resolution

	[ND-QNPQC-MD-02] Missing Entropy Check
	Recommended Resolution
	Resolution

	[ND-QNPQC-MD-03] Mass Use of Heap Allocation
	Recommended Resolution
	Resolution

	[ND-QNPQC-MD-04] Dependencies in Cryptographic Core
	Recommended Resolution
	Resolution

	[ND-QNPQC-MD-05] DOS Vector in Library
	Resolution

	[ND-QNPQC-LO-01] Reliance on BlackBox for Constant Time
	Resolution

	[ND-QNPQC-LO-02] Misleading Documentation
	Recommended Resolution
	Resolution

	[ND-QNPQC-LO-03] Incorrect Documentation
	Recommended Resolution
	Resolution

	[ND-QNPQC-LO-04] CT dependence on unprotected variable
	Resolution

	[ND-QNPQC-LO-05] Non-Constant Runtime
	Resolution

	[ND-QNPQC-IN-01] ChaCha20 Arithmetic on Sensitive Seeds
	Resolution

	[ND-QNPQC-IN-02] Elliptic Curve Arithemtic on ML-DSA Seeds
	Recommended Resolution
	Resolution

	About Neodyme
	Methodology
	Vulnerability Severity Rating

