
Security Audit - Pye Fi

conducted by Neodyme AG

Lead Auditor: Jasper Slusallek

Second Auditor: Nico Gründel

Administrative Lead: Thomas Lambertz

June 05, 2025

Security Audit - Pye Fi

Table of Contents
1 Executive Summary 3

Introduction 42
Summary of Findings . 4

3 Scope 5

Project Overview 6
Functionality . 6
On-Chain Data and Accounts . 8
Instructions . 10

4

Authority Structure . 16

Findings 17
[ND-PYE-HI-01] Jito tips can be stolen . 18
[ND-PYE-MD-01] Delinquency-triggered stake deactivation is not handled and will lead to
bricked instructions

. . 20

[ND-PYE-MD-02] Incorrect token program usage means some users will be unable to redeem . 22
[ND-PYE-MD-03] SoloValidator maturity handling can be DoSed, locking funds 24
[ND-PYE-MD-04] Linear YT calculation skews payout function, making later deposits more
profitable

. 25

[ND-PYE-LO-01] Canonical bonds can be DoSed via misconfiguration 27
[ND-PYE-LO-02] Epoch end date estimation can be significantly skewed 29
[ND-PYE-LO-03] Issuing is possible before bond.issuance_ts 30
[ND-PYE-IN-01] No global pause functionality . 31
[ND-PYE-IN-02] Incorrect calculation in UpdateLiquidReserve 32
[ND-PYE-IN-03] Bond domains should be separated better 33
[ND-PYE-IN-04] DepositSolMsol can be called with a non-marinade LST bond 34

5

[ND-PYE-IN-05] Minimum delegation is not 1 SOL . 35

Appendices

A About Neodyme 36

Methodology 37B
Select Common Vulnerabilities . 37

C Vulnerability Severity Rating 39

2 / 40

Security Audit - Pye Fi

1 Executive Summary
Neodyme audited Pye Finance’s on-chain liquid staking bonds program from February 2025 until
April 2025.

The scope of this audit included both implementation security and a conceptual review including
analysis of economic attack vectors.

Despite two prior audits, 8 security-relevant and 5 informational issues were found (as measured
by Neodyme’s Rating Classification). The number of findings identified throughout the audit, grouped
by severity, can be seen in Figure 1.

Critical 0

High 1

Medium 4

Low 3Se
ve

rit
y

Informational 5

Figure 1: Overview of Findings

The auditors reported all findings to the Pye Finance developers, who addressed them promptly. The
security fixes were verified for completeness by Neodyme. In addition to these findings, Neodyme
delivered the Pye Finance team a list of eleven nit-picks and additional notes that are not part of this
report.

3 / 40

Security Audit - Pye Fi

2 Introduction
From February 2025 until April 2025, Pye Finance engaged Neodyme to do a detailed security analysis
of their Pye Bonds Project. Two senior security researchers from Neodyme conducted independent
full audits of the contract between the 24th of February 2025 and the 30th of April 2025.

Both auditors have a long track record of finding critical and other high-impact vulnerabilities in
Solana programs, as well as in Solana’s core code itself. They have audited several other stake pools
including Marinade and SPL-Stake, both of which Pye Bonds interacts with. They are also familiar with
the intricacies of the Solana stake program and its many edge cases. The latter proved valuable, as it
directly lead to finding ND-PYE-MD-01, where a little-known functionality in the stake program could
cause bricked instructions in the Pye Bonds program.

Summary of Findings

All findings identified during the auditors were sent to the developers for discussion and remediation.
In total, the audit revealed

0 critical 1 high-severity 4 medium-severity 3 low-severity 5 informational

issues. They are detailed in Section 5.

The auditors found that although some improvements would improve readability of the code, the
structure of the code was overall clear and easy to understand. The business logic was kept simple
and precise.

4 / 40

https://neodyme.io

Security Audit - Pye Fi

3 Scope
The contract audit’s scope comprised of three major components:

• Primarily, the Implementation security of the contract’s source code
• Additionally, security of the overall design
• Additionally, resilience against economical attacks

Neodyme considers the source code, located at https://github.com/pyefi/pye-program-library, in
scope for this audit. Third-party dependencies are not in scope. The Pye contract relies on the Anchor
library, the SPL stake pool, marinade, as well as the standard Metaplex Metadata program, all of which
are well-established.

During the audit, minor changes and fixes were made by Pye Finance, which the auditors also
reviewed.

Relevant source code revisions are:

• 19d9adad9bd62f5b0aa2c3b180fb081c2443461e · Start of the audit
• 1048c402a9337494a55f5ab85e5bcd20f171fc71 · Last reviewed revision

5 / 40

https://github.com/pyefi/pye-program-library

Security Audit - Pye Fi

4 Project Overview
This section briefly outlines Pye Fi’s functionality, design, and architecture, followed by a detailed
discussion of all related authorities.

Functionality

Overview

Pye Fi’s protocol enables the separation and trading of staking yield independently from staked SOL.
When a user deposits tokens into the system, they receive two (newly minted) assets:

• Principal Tokens (PT), which represent ownership of the underlying staked SOL, and
• Yield Tokens (YT), which represent the future staking rewards.

This works via so-called “bonds”, which have fixed issuance and maturity dates. Each bond issues its
own unique PT and YT tokens. Users deposit into the bond to receive these PT and YT and can only
redeem them for the respective SOL value after the maturity date.

To be more precise, at maturity, the PT and YT can be redeemed together for the total value of the
stake: PT corresponding to the initial deposit amount, and YT to the staking rewards accrued by that
deposit amount during the bond’s duration. If slashing occurs and the total value of the bond at
maturity is less than the original deposit, PT holders get back the remaining value while YT holders
receive nothing. Post-maturity rewards are distributed proportionally between PT and YT holders,
which more or less simulates converting to liquid SOL and staking that until the actual redemption
occurs.

Bond Types

There are two primary types of bonds supported by the protocol: Solo Validator Bonds and Liquid
Staking Token (LST) Bonds.

Solo Validator Bonds handle SOL staked to a single, fixed validator. Each bond maintains two internal
stake accounts:

• a main stake account that holds active stake for most of the bond’s duration, and
• a transient stake account that facilitates stake activation or deactivation near the bond’s

maturity.

These bonds directly use the Solana stake program and handle their own stake accounts. After
maturity, they allow redemption either as new stake account containing the SOL, or as immediately
accessible liquid SOL.

To make liquid redemption possible, the protocol includes a “global counter party”, a program-
controlled account which acts as a pooled liquidity provider for all solo validator bonds. This counter
party holds liquid SOL and lets users trade in PT and YT to it in exchange for immediately getting liquid

6 / 40

Security Audit - Pye Fi

SOL rather than getting an active stake account. Later, the counter party can reclaim deactivated stake
from the bonds to replenish its liquidity. The counter party keeps track of its PT and YT holdings over
all bonds and triggers the appropriate stake deactivations for this. The instructions for doing this are
permissionless.

Note that the protocol periodically sweeps Jito tips from the stake account (received as unstaked SOL)
and restakes them. However, a bug in the instruction for depositing stake accounts into a solo validator
bond enabled users to steal the Jito tips instead, see ND-PYE-HI-01.

LST Bonds differ from Solo Validator Bonds in that they accept LSTs such as mSOL or SPL stake pool
tokens instead of native SOL. The bond specifies which LST it operates on during creation. The yield
represented by the YT in this case is the accrual in value of the LST between deposit and maturity.

Currently, only liquid staking tokens from the official SPL stake pool deployment as well as from the
single- and multi-validator Sanctum pools are supported.

On deposit, the protocol calculates the token’s value in lamports, locking in this value for PT issuance.
At maturity, the current value is recalculated, and YT receives the difference. Note that this requires
introspecting state accounts of the respective foreign stake-pool program.

PT and YT can be redeemed for LST after maturity. Note that this means that PT will normally be
redeemed for less LST than was deposited, as they represent a fixed SOL value, not a fixed LST value.
The delta in LST will represent the yield, which will be paid out to the YT.

Fees

Finally, the protocol includes two fee types. A deposit fee is applied to LST bonds at time of deposit.
Solo validator bonds do not incur this fee, instead they have a counter party fee when users opt for
liquid redemption through the global counter party rather than waiting for stake deactivation.

The deposit fee is collected in the protocol fee wallet, while counter party fees simply remain with the
counter party (whose liquidity would normally be controlled by the same entity).

Additional protocol revenue comes from the fact that SPL stake-pool allows a referrer for deposits,
which will get a kickback in LST from the fee charged by the stake pool. Pye sets this referrer to the
protocol fee wallet.

7 / 40

Security Audit - Pye Fi

On-Chain Data and Accounts

Data-Storing Accounts

The on-chain program needs to keep track of several things:
• global settings; this includes the counter party fee and deposit fee, the identity of the global

admin, as well as the protocol fee wallet where fees will end up. After our review, this was
expanded by the halt admin as well as the halt flags, which are each used to signal whether
certain functionality is halted or not.

• for each bond:
‣ the issuance, issuance close and maturity timestamp of the bond; deposits should only

be possible between the issuance and issuance close timestamps, and the bond will
mature and enable payouts after the maturity timestamp

‣ a boolean flag indicating whether maturity has been handled (i.e. the rewards calcu-
lated and the payouts stored in the redemption cache)

‣ the redemption cache, which is populated only after maturity and stores how much is
owed to PT and YT

‣ its PT and YT mint addresses
‣ reward commission values defining fees on rewards, though these are currently not

implemented.
• additionally, for solo validator bonds:

‣ what validator the bond is for (identified by the validator’s vote account)
‣ the main and transient stake account adresses
‣ the stake of the transient stake account, for accounting purposes
‣ boolean flags indicating whether the stake account is entirely unstaked and whether it

has been fully withdrawn
• additionally, for LST bonds:

‣ what stake pool the bond is for (identified by stake pool’s main state account as well as
the LST program’s address)

‣ the program’s vault address where the deposited LST are held

This data is represented on-chain as follows.

Globally, the protocol has one GlobalSettings account, located at the fixed and unique PDA that is
seeded by [b"global_settings"]. It stores the global fee settings as described above, along with the
halt admin and halt flags. They can only be changed by the global admin authority, whose address is
also stored in this account.

For each Solo Validator Bond, the protocol has a SoloValidatorBond account, whose PDA is seeded
by [b"bond", validator_vote_account_address, issuance_timestamp, maturity_timestamp]. It
stores all the information that is stored for every bond, along with the information specific to Solo
Validator Bonds, both as listed above. Its data is not meant to be changed directly by any authority,

8 / 40

Security Audit - Pye Fi

and indeed all its values are either static or are accounting or state variables that are programmatically
changed under certain conditions.

For each LST Bond, the protocol has an LSTBond account where the address is the PDA derived by
[b"bond", stake_pool_state_account_address, issuance_timestamp, maturity_timestamp].

Note that because bonds can be created permissionlessly, and because there can only be one bond for
each underlying validator/stake pool and issuance-maturity combination, issues would arise if bonds
could be misconfigured. One such issue was uncovered during the audit with ND-PYE-LO-01, where an
attacker could misconfigure bond by supplying misleading or malicious token metadata information.

Other PDAs

Apart from the data-storing accounts in the last section, the following accounts are used by the
program:

• For each bond, the token mint accounts for PT and YT are located at the PDAs derived via the
seeds [b"principal"] and [b"yield"], respectively.

• The global counter party account, which is at the PDA seeded by [b"counter_party"]. It holds
the counter party’s liquid SOL funds.

‣ Additionally, the ATAs of the counter party for each PT and YT mint are used to store the
PT and YT that users redeem with the counter party for its liquid SOL.

• For each LST Bond, the lst vault is located at the ATA of the bond account for the bond’s LST
mint (and for the LST’s token program). It holds the LST that users deposit into the bond.

• For each Solo Validator Bond, the main stake account is created at the PDA seeded by
[b"stake"]. It is the stake account that usually holds all activated stake of the bond.

• Additionally, each Solo Validator Bond has a transient stake account for activating stake before
maturity or deactivating it afterwards. This is not located at a PDA, rather the account used for
it is supplied by the user and its location then stored in the bond account and checked on every
usage.

• Finally, the global settings account references an external protocol fee wallet, which is where
protocol fees are sent to. Specifically, PT and YT fees are sent to its ATAs on each deposit into a
Solo Validator Bond. Furthermore, its LST ATA is also passed as a referrer when depositing via
an SPL stake-pool deployment. Fees for Solo Validator Bonds, which are charged at redemption
via the counter party, instead simply remain in the global counter party.

9 / 40

Security Audit - Pye Fi

Instructions

The contract has a total of 25 instructions, which we briefly summarize here.

We divide them into categories based on which component it is associated with. Specifically, we group
them into LST Bond instructions, Solo Validator Bond instructions, and global instructions.

Global Instructions

Instruction Category Summary

InitGlobalSettings Permissionless Initializes the global settings account and populates it
with the supplied data. Fee parameters are verified. The
account is unique due to a fixed seed, hence this will fail
if called again later.

UpdateFeeSettings Global Admin Only Updates the fees settings in the global settings account.
Parameters are verified to be within the hard-coded
allowed range.

UpdateHaltAdmin Global Admin Only Updates the halt admin.

UpdateHaltStatus Halt Admin Only Updates the halt flags in the global settings account,
enabling or disabling the corresponding functionality.

NativeTransfer Permissionless Does a native SOL transfer. Used for self-CPI in other
instructions, makes logs clearer.

LST Bond Instructions

Instruction Category Summary

InitializeStakePoolBond Permissionless Initializes an LST bond account and populates it
with the supplied data.

The account is unique for each combination of
underlying stake pool, issuance date and matu-
rity date. Note that this, along with the fact that
this instruction is permissionless, allows attack-
ers to DOS specific “canonical” combinations via
misconfigured bond accounts. See finding ND-
PYE-LO-01.

Deposit User Simply transfers LST from the user to the bond’s
vault and mints PT and YT according to the cur-
rent lamport value of those LST (as calculated
via reading the current rate from the external LST
contract)

10 / 40

Security Audit - Pye Fi

Instruction Category Summary

DepositSol User Similar to deposit, but the deposit is routed
through an spl-stake-pool deployment. That is,
the user makes SOL available which is deposited
into the stake pool, and the resulting LST are
then transferred to the bond’s vault, thus contin-
uing as in Deposit.

Note that spl-stake-pool allows a referrer, which
in this case is set to an ATA of the protocol fee
wallet – a cut of the LST fee will be sent there,
generating protocol revenue.

DepositSolMsol User Similar to DepositSol, but instead of an spl-
stake-pool deployment, the deposit is routed
through marinade. The resulting mSOL go into
the bond’s vault.

RedeemPt User (any PT holder) Burns the given PT and calculates their lamport
value. LST with an equivalent lamport value are
then sent to the user from the bond’s vault.

Can only be called after maturity and after the
redemption cache of the bond is set.

RedeemYt User (any YT holder) Very similar to RedeemPT, namely: Burns the
given YT and calculates their lamport value. LST
with an equivalent lamport value are then sent
to the user from the bond’s vault.

Can only be called after maturity and after the
redemption cache of the bond is set.

11 / 40

Security Audit - Pye Fi

Instruction Category Summary

LstBondHandleMaturity Permissionless Handles the maturity of the bond (assuming the
maturity timestamp has passed).

Specifically, sets the redemption conversion
cache if it isn’t set already. This calculates the
current lamport worth of all LST in the vault
and calculates the amount of LST that should go
to the PT. Normally, this is the number of LST
such that their current lamport worth is exactly
the total lamport worth of all deposits (i.e. how
much PT put in), and all remaining LST go to the
YT. If slashing occured – meaning the total lam-
port worth now is less than the sum of deposits –
this is instead distributed evenly among PT, and
YT receive nothing.

Solo Validator Bond Instructions

Instruction Category Summary

InitializeSoloValidatorBond Permissionless Initializes an LST bond account and
populates it with the supplied data.

The account is unique for each com-
bination of underlying stake pool, is-
suance date and maturity date. As with
InitializeStakePoolBond this leads to a
low-severity DoS, see finding ND-PYE-
LO-01.

SoloValidatorDepositSol User Takes the SOL deposit from the user
and puts it into the bond’s two-stake-
account stake system. Mints a corre-
sponding amount of PT and YT.

The calculation of YT assumes that the
deposited stake is activated in the next
epoch, which is true in almost all cases.

12 / 40

Security Audit - Pye Fi

Instruction Category Summary

SoloValidatorDepositStake User Takes an active stake account and
merges it into the bond’s main stake ac-
count. Mints PT and YT corresponding
to the amount of delegated lamports on
the stake account.

This assumes that merging is possi-
ble, which, if the main stake account
is already activated, means that the
deposited stake account must be dele-
gated to the bond’s corresponding val-
idator.

Any undelegated lamports on the de-
posited stake account are refunded to
the user after the stake accounts are
merged and are therefore not treated as
deposited for the purposes of calculat-
ing PT and YT amounts.

SoloValidatorDelegateTips Permissionless Sweeps any undelegated lamports
from the bond’s main stake account
and puts them into the bond’s two-
stake-account stake system. These un-
delegated lamports are most com-
monly Jito Tips, hence this instruction
is an essential function for being able to
compound these additional rewards.

Cannot be called after the bond’s matu-
rity has been handled (Auditor’s note:
if this were possible, it would create a
DOS vector.)

13 / 40

Security Audit - Pye Fi

Instruction Category Summary

SoloValidatorHandleMaturity Permissionless Handles the maturity of the bond (as-
suming the maturity timestamp has
passed).

Specifically, sets the redemption con-
version cache if it isn’t set already. This
calculates the total lamports currently
owned by the bond in its stake system
as well as its liquid reserve. If the total
is less than the sum of deposits, PT
get everything while YT receive nothing.
Otherwise, PT receive exactly their de-
posit back while the additional rewards
are split between all YT.

SoloValidatorRedeemPtForSol User (any PT holder) Sends the given PT to the global
counter party and pays out the corre-
sponding SOL from the global counter
party’s SOL reserve, minus the counter
party fee.

Can obviously only be called after the
bond’s maturity has been handled.

Also updates internal accounting to
make sure future payouts are also cor-
rectly handled.

SoloValidatorRedeemYtForSol User (any YT holder) Same as SoloValidatorRedeemPtFor-
Sol, but for YT instead of PT.

SoloValidatorRedeemPtForStake User (any PT holder) Same as SoloValidatorRedeemPtFor-
Sol, but the user is paid out via a stake
account that is split of from the main
bond stake account instead of via the
global counterparty.

SoloValidatorRedeemYtForStake User (any YT holder) Same as SoloValidatorRedeemPt-
ForStake, but for YT instead of PT.

14 / 40

Security Audit - Pye Fi

Instruction Category Summary

CounterPartyRedeemPt Permissionless Burns a specified amount of the cor-
responding bond’s PT in the global
counter party’s possesion and pays the
global counter party from the bond’s
liquid reserve.

Note that UpdateLiquidReserve keeps
the bond’s liquid reserve liquid enough
to fulfill these requests. See that
instruction’s description below.

CounterPartyRedeemYt Permissionless Same as CounterPartyRedeemYT, but
for YT instead of PT

UpdateLiquidReserve Permissionless Calculates the amount of lamports
owed to the global counter party if it
were to redeem all its PT and YT. Then
calculate how much SOL is still needed
in the bond’s liquid reserve in order
to fulfill those redeem operations. That
amount is then unstaked from the
bond’s stake system.

Only callable when bond maturity has
been handled.

CounterPartyWithdrawSol Global Admin Only Withdraws SOL from the global counter
party’s account to the global admin’s
account.

Note that the SOL held in the global
counter party account is both liquidity
for liquid redeems as well as fees that
have been generated by said liquid
redeems in any of the solo validator
bonds. The global admin has authority
over all these funds.

15 / 40

Security Audit - Pye Fi

Authority Structure

The contract has three privileged authorities or authority types: The upgrade authority, the global
admin and the halt admin. Each of these entities has different powers, and the potential effects of
each of them being abused are very different.

In this section, we discuss what powers each of the authorities has, and what the worst-case effect of
a compromise of each of them would be.

Upgrade Authority

As with any contract, the upgrade authority has complete control over the program and the funds it
controls. This includes any funds in PDAs, stake accounts, or simply token accounts controlled by the
contract. A compromise is therefore catastrophic.

The upgrade authority is hence one of the most critical components of the security of the protocol.
By maliciously upgrading the contract, the upgrade authority can irreversibly transfer control of all
funds in the global counter party, in all of the bonds’ staking systems and all of the LST vaults. It cannot
touch the funds in the protocol fee authority, as that is controlled by the developers, not the contract.

Global Admin

The global admin has control over the fee parameters, including both the amount of fees collected
and where any collected fees are sent. More importantly, it controls all funds currently in the global
counter party’s possession, as the global admin can call CounterPartyWithdrawSol.

A compromise of this authority would thus mean that all the liquidity provided by the protocol would
be drained. This does not, however, affect user funds which are stored in the LST or the stake accounts
of the individual bonds.

Finally, note that the global admin also controls the identity of the halt authority, and thus that a
compromise of the global admin also means that the halt admin should be viewed as compromised.

Halt Admin

The halt admin has only one power: to halt the contract, or to re-enable it. It is set by the global admin.

Obviously, its compromise would open the contract up to a denial-of-service. However, there should
be no further effects.

16 / 40

Security Audit - Pye Fi

5 Findings
This section outlines all of our findings.

They are classified into one of five severity levels, detailed in Appendix C. In addition to these findings,
Neodyme delivered the Pye Finance team a list of nit-picks and additional notes which are not part of
this report.

All findings are listed in Table 4 and further described in the following sections.

Identifier Name Severity Status

ND-PYE-
HI-01

Jito tips can be stolen HIGH Fixed

ND-PYE-
MD-01

Delinquency-triggered stake deactivation
is not handled and will lead to bricked
instructions

MEDIUM Fixed

ND-PYE-
MD-02

Incorrect token program usage means
some users will be unable to redeem

MEDIUM Fixed

ND-PYE-
MD-03

SoloValidator maturity handling can be
DoSed, locking funds

MEDIUM Fixed

ND-PYE-
MD-04

Linear YT calculation skews payout
function, making later deposits more
profitable

MEDIUM Acknowledged

ND-PYE-
LO-01

Canonical bonds can be DoSed via
misconfiguration

LOW Acknowledged

ND-PYE-
LO-02

Epoch end date estimation can be
significantly skewed

LOW Fixed

ND-PYE-
LO-03

Issuing is possible before
bond.issuance_ts

LOW Fixed

ND-PYE-
IN-01

No global pause functionality INFORMATIONAL Fixed

ND-PYE-
IN-02

Incorrect calculation in
UpdateLiquidReserve

INFORMATIONAL Fixed

ND-PYE-
IN-03

Bond domains should be separated better INFORMATIONAL Acknowledged

ND-PYE-
IN-04

DepositSolMsol can be called with a non-
marinade LST bond

INFORMATIONAL Fixed

ND-PYE-
IN-05

Minimum delegation is not 1 SOL INFORMATIONAL Fixed

Table 4: Findings
17 / 40

Security Audit - Pye Fi

[ND-PYE-HI-01] Jito tips can be stolen

Severity Impact Affected Component Status

HIGH Limited Loss of Funds Stake Management in Solo Validator Bonds Fixed

Description

Jito tips are sent to stake accounts as additional unstaked SOL. Normally, for solo validator bonds,
they will be swept up via the DelegateTips instructions, which withdraws any excess lamports and
stakes them.

However, there is a way for the user to obtain the jito tips deposited to the bond’s main stake account
instead. Let us look at DepositStake. It does the following:

1. Transfers the authorities of the to-be-deposited stake account from the user (attacker) to the
bond

2. Merges the stake account into the bond’s main stake account
3. Withdraws any excess lamports on the main stake account to the user [1]
4. Continues with the usual deposit logic by calculating and minting PT/YT amounts

Note that step 3 was most likely inserted to return the stake account rent to the user. However, it
also sends any previously undelegated lamports on the main stake account account to the user. This
includes all jito tips paid to the main stake account.

The attacker can thus steal all jito tips paid to the bond – likely a significant amount – as long as they
deposit any stake account between the jito payout and the call to DelegateTips. This is likely a very
relaxed window of time.

To mitigate this, we would suggest storing the amount of undelegated lamports on the main stake
account before the merge and only paying the user the difference.

Location

[1] https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc
71/programs/bonds/src/instructions/solo_validator/deposit_stake.rs#L241

Relevant Code

1 let post_bond_stake_lamports = ctx.accounts.stake_account.lamports();
2 // Handle withdrawing any extra SOL that may have been transferred over
3 let excess_lamports = post_bond_stake_lamports
4 .checked_sub(bond_stake_state.delegation.stake)
5 .and_then(|amount| amount.checked_sub(bond_stake_meta.rent_exempt_reserve))
6 .ok_or(ErrorCode::ArithmeticOverflow)?;
7 if excess_lamports > 0 {

18 / 40

https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/solo_validator/deposit_stake.rs#L241
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/solo_validator/deposit_stake.rs#L241

Security Audit - Pye Fi

8 stake_withdraw(
9 ctx.accounts.stake_account.to_account_info(),
10 ctx.accounts.bond.to_account_info(),
11 ctx.accounts.owner.to_account_info(),
12 ctx.accounts.clock.to_account_info(),
13 ctx.accounts.stake_history.to_account_info(),
14 Some(&[solo_validator_bond_signer_seeds!(ctx.accounts.bond)]),
15 excess_lamports,
16)?;
17 }

Remediation

The Pye Fi developers remedied this by changing the logic such that only the increase in unstaked
lamports in the merge target is refunded to the user. The fix was authored in PR 70 and verified for
correctness by the auditors.

19 / 40

https://github.com/pyefi/pye-program-library/pull/70

Security Audit - Pye Fi

[ND-PYE-MD-01] Delinquency-triggered stake deactivation is not
handled and will lead to bricked instructions

Severity Impact Affected Component Status

MEDIUM Accidental DoS Stake Management in Solo Validator Bonds Fixed

Description

The stake program has a little-known permissionless instruction which allows anyone to deactivate a
stake account that is staked to a validator that has been delinquent for at least 5 epochs [1]

This becomes relevant for solo validator bonds because the contract never expects to handle a main
stake account that is Inactive (i.e. no effective stake, no activating stake and no deactivating stake),
and will error.

In particular, the stake_sol! instruction used in deposits and to delegate tips errors immediately if
either the main or the transient stake account is Inactive [2]. Hence all deposits and all re-staking of
rewards is bricked.

Additionally, if the counter party has enough PT and YT to trigger full deactivation of the main stake
account, the contract will error, as it will try deactivating an already deactivated stake account [3].

Locations

[1] https://github.com/solana-program/stake/blob/bcec951fda5f2a30b1f4a058706d2e9ed23a8429/
program/src/processor.rs#L982

[2] https://github.com/pyefi/pye-program-library/blob/19d9adad9bd62f5b0aa2c3b180fb081c
2443461e/programs/bonds/src/macros.rs#L412

[3] https://github.com/solana-program/stake/blob/bcec951fda5f2a30b1f4a058706d2e9ed23a8429/
interface/src/state.rs#L987

Relevant Code

1 macro_rules! stake_sol {
2 ($ctx:expr, $staked_amount:expr, $transient_stake_account:expr, $owner:expr)

=> {
3
4 let clock = Clock::get()?;
5 let bond_stake_status = get_stake_status(
6 &$ctx.accounts.stake_account,
7 clock.epoch,
8 &$ctx.accounts.stake_history,
9)?;

20 / 40

https://github.com/solana-program/stake/blob/bcec951fda5f2a30b1f4a058706d2e9ed23a8429/program/src/processor.rs#L982
https://github.com/solana-program/stake/blob/bcec951fda5f2a30b1f4a058706d2e9ed23a8429/program/src/processor.rs#L982
https://github.com/pyefi/pye-program-library/blob/19d9adad9bd62f5b0aa2c3b180fb081c2443461e/programs/bonds/src/macros.rs#L412
https://github.com/pyefi/pye-program-library/blob/19d9adad9bd62f5b0aa2c3b180fb081c2443461e/programs/bonds/src/macros.rs#L412
https://github.com/solana-program/stake/blob/bcec951fda5f2a30b1f4a058706d2e9ed23a8429/interface/src/state.rs#L987
https://github.com/solana-program/stake/blob/bcec951fda5f2a30b1f4a058706d2e9ed23a8429/interface/src/state.rs#L987

Security Audit - Pye Fi

10 msg!("bss {:?}", bond_stake_status);
11 match bond_stake_status {
12 StakeStatus::Empty => { /* ... */ }
13 StakeStatus::Activating => { /* ... */ }
14 StakeStatus::FullyActive => { /* ... */ }
15 // TODO: REVIEW: Is there an edge case where the stake is forced

unstaked on a cluster reset and it's in an inactive state?
16 _ => return Err(ErrorCode::UnsupportedStakeState.into()),
17 }
18 };
19 }

Remediation

The Pye Fi team remediated this by adding handlers for the case that the stake account is inactive in
PR 72.

The auditors remarked that there were some inconsistencies between different cases after the fix,
which were subsequently ironed out in PR 87. The final changes were fully reviewed by the auditors
as well.

21 / 40

https://github.com/pyefi/pye-program-library/pull/72
https://github.com/pyefi/pye-program-library/pull/87

Security Audit - Pye Fi

[ND-PYE-MD-02] Incorrect token program usage means some users
will be unable to redeem

Severity Impact Affected Component Status

MEDIUM Accidental DoS Locking User Funds Redemption in LST Bonds Fixed

Description

In RedeemPT [1] and RedeemYT [2] for LST bonds, in the transfer_lst_to_owner helper function,
you use the wrong token program to send the LST. You use ctx.token_program, when it should be
ctx.lst_token_program.

Impact: If the token programs for PT/YT and LSTs differ, redeeming PT will be impossible. This breaks
intended functionality of the contract.

Note that the LST bonds’ Deposit instruction also uses the incorrect token program for its LST transfer
[3]. This means that depositing LSTs will be impossible for differing LST and PT/YT programs.

Locations

[1] https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc
71/programs/bonds/src/instructions/redeem_pt.rs#L87

[2] https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc
71/programs/bonds/src/instructions/redeem_yt.rs#L97

[3] https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc
71/programs/bonds/src/instructions/deposit.rs#L31

Relevant Code

Affected File: path/to/file

1 pub fn transfer_lst_to_owner(&self, amount: u64) -> Result<()> {
2 let cpi_accounts = /*...*/
3 let cpi_ctx = CpiContext {
4 accounts: /* ... */,
5 remaining_accounts: /* ... */,
6 program: self.token_program.to_account_info(), // <--- !
7 signer_seeds: /* ... */,
8 };
9 token_interface::transfer_checked(cpi_ctx, amount, self.lst_mint.decimals)
10 }

22 / 40

https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/redeem_pt.rs#L87
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/redeem_pt.rs#L87
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/redeem_yt.rs#L97
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/redeem_yt.rs#L97
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/deposit.rs#L31
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/deposit.rs#L31
https://Link/to/the/helper/func.rs

Security Audit - Pye Fi

Remediation

The token program used for the transfer was corrected in PR 73. Neodyme verified the fix.

23 / 40

https://github.com/pyefi/pye-program-library/pull/73

Security Audit - Pye Fi

[ND-PYE-MD-03] SoloValidator maturity handling can be DoSed,
locking funds

Severity Impact Affected Component Status

MEDIUM DoS, Locking Funds Maturity Handling of Solo Validator Bonds Fixed

Description

The SoloValidatorHandleMaturity instruction will error if the transient stake account isn’t currently
Empty or FullyActive [1]. In particular, it will error if the stake account is currently activating.

This can be abused by an attacker by keeping the transient stake account in an activating state. Directly
after the epoch boundary, they can deposit 1 lamport into the main stake account themselves. They
can then call DelegateTips, which sweeps the undelegated lamport(s) from the main stake account
and re-stakes them using the transient stake account. This will merge the old transient stake account
that is now FullyActivated into the main account and then delegate all the excess lamports with a
new, now-activating transient stake account.

This way, the transient stake account will always be activating and HandleMaturity can never be called.
The bond maintainer would have to manage to front-run the attacker’s DelegateTips call to resolve
this situation.

Note that DelegateTips cannot be called after maturity is handled, but this is not a problem since we
are DoSing just that.

Location

[1] https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc
71/programs/bonds/src/instructions/solo_validator/handle_maturity.rs#L77

Relevant Code

1 // Handle existing transient account
2 match transient_stake_status {
3 StakeStatus::Empty => { /* ... */ }
4 StakeStatus::FullyActive => { /* ... */ }
5 _ => return Err(ErrorCode::UnsupportedStakeState.into()),
6 }

Remediation

The Pye Fi team addressed this by disallowing DelegateTips after the bond’s maturity in PR 74.
Neodyme verified the fix.

24 / 40

https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/solo_validator/handle_maturity.rs#L77
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/solo_validator/handle_maturity.rs#L77
https://github.com/pyefi/pye-program-library/pull/74

Security Audit - Pye Fi

[ND-PYE-MD-04] Linear YT calculation skews payout function, mak-
ing later deposits more profitable

Severity Impact Affected Component Status

MEDIUM Misaligned incentives Core Business Logic Acknowledged

Description

Generally, the idea of the protocol is that YT represent a share of the staking rewards of the underlying
SOL. Users who deposit later should receive proportionally less YT, since the tokens they deposited
generate less rewards.

However, this decrease in YT payout is modeled as a linear function. For a deposit of x SOL, the user
always receives:

• 𝑋 PT [1] and
• 𝑥 ∗ bond.maturity_ts − now

bond.maturity_ts − bond.issuance_ts YT [2]

This linear formula does not track compound interest. That, in turn, has a measurable effect.

To see this, let’s go through a simple example. We create a bond that goes from t=0 to t=200 (we use
epochs here for simplicity, so this bond would run a bit over a year). We assume staking rewards per
epoch of 0.044%, which would result in 8.3% APY.

We have two depositors, A and B.

A deposits 1000 SOL at t=0. They hence receive
• 1000 PT and
• 1000 YT.

Meanwhile, B stakes their SOL natively until t=100 and only then deposits it into Pye. They have
accumulated 1.00044^100 * 1000 ~ 1045 SOL and hence receive

• 1045 PT and
• 1045 / 2 = 522.5 YT

Note that we are ignoring the fact that we may need to unstake the SOL for one epoch to deposit
them, however this is both negligible and we can ignore this by depositing LST instead of native SOL,
eliminating the unstaking period.

We now wait until t=200. The total rewards that the protocol accumulated are (1.00044^200 - 1) *
1000 + (1.00044^100 - 1) * 1045 ~ 138.96.

Both A and B now trade in their PT and YT. We have that:
• A receives 1000 SOL for their PT and 1000/1522.5 * 138.96 = 91.27 SOL for their YT.
• B receives 1045 SOL for their PT and 522.5/1522.5 * 138.96 = 47.66 SOL for their YT.

25 / 40

Security Audit - Pye Fi

Hence A received a total of 1091.27 SOL, while B received a total of 1092.66 SOL. The return of simply
natively staking would have been 1.00044^200 * 1000 = 1091.97 SOL. Hence, in effect, B has “stolen”
0.7 SOL from A’s rewards.

In general, the formulas work out as follows when abstracting the total bond duration M in epochs,
along with the epoch D at which B deposits:

• After D epochs, B has accumulated f(D) = 1.00044^D * 1000 SOL
• After M epochs, the total rewards accumulated by the protocol are r(M,D) = (1.00044^M - 1)
* 1000 + (1.00044^(M-D) - 1) f(D)

• When redeeming right after maturity, A receives 1000 + 1000
1000+𝑓(𝐷)∗𝑀−𝐷

𝑀
∗ 𝑟(𝑀,𝐷)

• B receives 𝑓(𝐷) + 𝑓(𝐷)∗𝑀−𝐷
𝑀

1000+𝑓(𝐷)∗𝑀−𝐷
𝑀
∗ 𝑟(𝑀,𝐷)

It is obvious that the difference gets exponentially worse as M grows. For example, for an M=2000
epoch bond (around 11 years) and D=1300, A receives 2265 SOL at the end, while B receives 2556 SOL,
meaning B has “stolen” 145.5 SOL from A.

Location

[1] https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc
71/programs/bonds/src/state/solo_validator_bond.rs#L249

[2] https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc
71/programs/bonds/src/instructions/solo_validator/redeem_yt_for_sol.rs#L108

Mitigation Suggestion

The protocol should be modified to either integrate compounding interest into its calculation, or bond
duration should be restricted to total durations where the effect of compounding interest is negligible.

Remediation

The Pye Fi developers stated that the addition of issuance_close date – which was added during the
audit – mitigates this issue. They also stated that the planned issuance window for canonical bonds
was around 1 week or less, which makes the compounding factor is negligible.

26 / 40

https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/state/solo_validator_bond.rs#L249
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/state/solo_validator_bond.rs#L249
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/solo_validator/redeem_yt_for_sol.rs#L108
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/solo_validator/redeem_yt_for_sol.rs#L108

Security Audit - Pye Fi

[ND-PYE-LO-01] Canonical bonds can be DoSed via misconfiguration

Severity Impact Affected Component Status

LOW DoS of bond creation Bond Creation Acknowledged

Description

For LST bonds, there can only be one bond per tuple of the form (stake_pool_account, issuance_ts,
maturity_ts) [1]. The same is true for solo validators when replacing the first entry by the validator
vote account [2].

It is likely that there will be periodical bonds issued at fixed time intervals. By interpolating the relevant
timestamps of the next bonds issued for a stake pool or validator, an attacker can DoS the not-yet-
created bonds by misconfiguring them.

Note that while most configuration data is defaulted to canonical values, the attacker still has certain
freedoms in misconfiguring the bond.

As a particular example, the attacker can choose which token program to use for PT and YT. By for
example choosing token22 when the old token program is expected, they can break interoperability
of the tokens with many other protocols.

Additionally, the attacker can choose the metadata arguments, meaning token name, token symbol
and URI.

Note that the metadata update authority is the bond account and that there are no IXs that expose
updating it. However if there were, who would have the authority to do so? The bond creator is the
attacker, so the functionality to update it would have to be set to a protocol authority.

Location

[1] https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc
71/programs/bonds/src/instructions/initialize_stake_pool_bond.rs#L24

[2] https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc
71/programs/bonds/src/instructions/initialize_solo_validator_bond.rs#L22

Remediation

The developers stated the following in this respect:

27 / 40

https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/initialize_stake_pool_bond.rs#L24
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/initialize_stake_pool_bond.rs#L24
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/initialize_solo_validator_bond.rs#L22
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/initialize_solo_validator_bond.rs#L22

Security Audit - Pye Fi

1 Because issuance_ts and maturity_ts are both part of the seeds, [the] adversary
would have to create all combinations of issuance and maturity for a given
issuance date and maturity date to block it. The stakeholders have no problem
shifting issuance and maturity dates. So I don't think changing the seeds at this
moment is worth while giving the break to backwards compatibility, but we'll
look further.

The auditors understand this reasoning. The developers also changed the code such that the bond
creator is now stored in the bond account, which makes filtering for canonical bonds easier. This was
done in PR 83.

28 / 40

https://github.com/pyefi/pye-program-library/pull/83

Security Audit - Pye Fi

[ND-PYE-LO-02] Epoch end date estimation can be significantly
skewed

Severity Impact Affected Component Status

LOW Incorrect YT payout Business Logic in Solo Validator Bonds Fixed

Description

Consider the function est_next_epoch_start_ts. It estimates the timestamp of the next epoch
boundary based on either:

• a constant 400ms per slot if less than 10 slots have passed this epoch
• the average ms per slot in this epoch so far if at least 10 slots have passed

The result of the function is used to calculate when deposits into a solo validator bond start
accumulating rewards, i.e. to account for the activation period.

However, this approach is flawed for several reasons:
• Slot length is not uniform, especially around epoch boundaries when additional calculations

for reward distribution and other things takes place (although it should be noted that this
discrepancy in slot length has recently gotten smaller)

• The chain may experience difficulties or even go down, meaning no slots will be produced while
the timestamp will still advance. This would mean that if the chain goes down for, say, 11 hours
in the 10th slot and the function is called in the 11th slot, the function will estimate an average
of one hour per slot. This would mean that the protocol assumes that the stake will only be
activated in slots_per_epoch * 1h = 432000h, or about 50 years.

• Validators can subtly manipulate the time per slot in their leader slots in order to either have
their own stake accumulate rewards quicker or to troll other depositors.

As a mitigation, we would recommend bounding the result of the function both above and below by
agreeable values.

Remediation

The Pye Fi developers remediated this by clamping acceptable slot time values to a range of 350 to
550 in PR 75. This follows the suggested remediation.

29 / 40

https://github.com/pyefi/pye-program-library/pull/75

Security Audit - Pye Fi

[ND-PYE-LO-03] Issuing is possible before bond.issuance_ts

Severity Impact Affected Component Status

LOW Incorrect Functionality Deposits Fixed

Description

For both solo validator and LST bonds, issuance_ts is not restricted in their initialization instruction.
It can be set to a date far into the future, yet deposits will still be allowed before issuance_ts.

Note that deposits before issuance_ts lead to counterintuitive amounts of YT, since the are calculated
with a factor of (bond.maturity_ts - now) / (bond.maturity_ts - bond.issuance_ts), which will
be greater than 1. While not leading to exploitable behavior, this is highly counterintuitive.

We believe the intended functionality was – or indeed that the correct behavior should be – to enable
deposits only after bond.issuance_ts.

Remediation

The developers fixed this with PR 76.

30 / 40

https://github.com/pyefi/pye-program-library/pull/76

Security Audit - Pye Fi

[ND-PYE-IN-01] No global pause functionality

Severity Impact Affected Component Status

INFORMATIONAL Missing Exploit Mitigation All Fixed

Description

Currently, the contract has no functionality to pause all operations.

This may of particular interest if an exploit is discovered that affects the global counter party, as it
may hold significant funds. Having a pause functionality would enable the maintainer to suspend
operations until a fix is developed and an upgrade to the contract is done.

Remediation

The developers added a halt authority and the corresponding instruction to halt or re-enable the
program in PR 83. The changes were reviewed by Neodyme.

31 / 40

https://github.com/pyefi/pye-program-library/pull/81

Security Audit - Pye Fi

[ND-PYE-IN-02] Incorrect calculation in UpdateLiquidReserve

Severity Impact Affected Component Status

INFORMATIONAL Inaccurate accounting Business Logic of Solo Validator Bonds Fixed

Description

In UpdateLiquidReserve, the calculation of source_stake_after_split is incorrect. This variable is
supposed to hold the size of the delegation after lamports_to_unstake lamports are split into a new
stake account. Currently however, the calculation is done as:

1 // handle case where this may error because the bond stake account (aka source
stake

2 // account), ends up below the minimum delegation amount if unstaked. At this
point, the

3 // entire bond stake account should be unstaked and moved to the liquid reserve.
4 let stake_account_lamports = ctx.accounts.stake_account.lamports();
5 let source_stake_after_split = stake_account_lamports
6 .saturating_sub(lamports_to_unstake)
7 .saturating_sub(stake_rent);

However, stake_account_lamports may also contain unstaked excess lamports.

This variable is later used to determined whether the main stake account has any delegation
remaining. If so, bond.completely_unstaked is set to true.

Hence, if lamports_to_unstake is exactly the size of the delegation but there are more than
minimum_stake_account_amt excess lamports on the stake account, everything will be split into
the transient stake account, so the main account is entirely empty. However, completely_unstaked
incorrectly remains as false.

Location

https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/
programs/bonds/src/instructions/counter_party/update_liquid_reserve.rs#L212

Remediation

The developers remedied this by changing source_stake_after_split in such a way that it only
calculates the difference in delegated stake. This was done in PR 77. Neodyme reviewed the fix.

32 / 40

https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/counter_party/update_liquid_reserve.rs#L212
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/counter_party/update_liquid_reserve.rs#L212
https://github.com/pyefi/pye-program-library/pull/77

Security Audit - Pye Fi

[ND-PYE-IN-03] Bond domains should be separated better

Severity Impact Affected Component Status

INFORMATIONAL Negligible PDA Seeds Acknowledged

Description

We would recommend separating the seed domain of solo validator bonds from that of LST bonds.
Right now, both prefixes are b"bond" followed by data fields that are equal in structure.

Though a collision would require a fair amount of effort and only DoS the creation of a very specific
bond, separating the domains requires no effort and prevents this from happening. It is also cleaner
design.

Remediation

The developer stated that while they agree with the rationale on cleaner design, they do not see
a risk of collision since SoloValidatorBond requires the validator_vote_account in the seed while
StakePoolBond requires stake_pool in the seed, and there’s validation on these accounts in the
initialization.

The auditors agree that a collision here would be difficult to impossible to achieve, and that a collision
also gives negligible to no gain to the attacker.

33 / 40

Security Audit - Pye Fi

[ND-PYE-IN-04] DepositSolMsol can be called with a non-marinade
LST bond

Severity Impact Affected Component Status

INFORMATIONAL Negligible Deposit in LST Bonds Fixed

Description

In DepositSolMsol, note that there is no check that the bond that was passed into this instruction is
actually an LST bond tied to marinade.

We can call this instruction with a bond that is tied to a different LST program, along with that other
LST program as marinade_program. The contract will attempt calling Deposit on it, which will fail
unless the LST program is upgraded to include such an instruction with the according argument and
account layout.

Remediation

This was remedied in PRs 78 and 87. Neodyme verified the fix.

34 / 40

https://github.com/pyefi/pye-program-library/pull/78
https://github.com/pyefi/pye-program-library/pull/87

Security Audit - Pye Fi

[ND-PYE-IN-05] Minimum delegation is not 1 SOL

Severity Impact Affected Component Status

INFORMATIONAL Unnecessary restriction due to
incorrect assumption

Redemption and Deposit in Solo
Validator Bonds

Fixed

Description

In RedeemYtForStake, a minimum withdrawal of 1 SOL is enforced [1]. However, this is not enforced
in RedeemPtForSol. Indeed, there does not appear to be a reason for this restriction.

Similarly, here [2] 1 SOL minimum stake is enforced while arguing that this is because the stake
program does not allow smaller stakes.

This is incorrect. There is currently no limit as to how small a delegation can be. A Solana feature gate
to introduce a 1 SOL minimum has existed for some time [3] but has not been activated [4], nor is it
likely to be in the near future [5].

Location

[1] https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc
71/programs/bonds/src/instructions/solo_validator/redeem_yt_for_stake.rs#L152

[2] https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc
71/programs/bonds/src/instructions/solo_validator/deposit_sol.rs#L145

[3] https://github.com/anza-xyz/solana-sdk/blob/0f9989d0f2f6aa5328124084e20f587446bda79b/
feature-set/src/lib.rs#L396

[4] https://explorer.solana.com/address/9onWzzvCzNC2jfhxxeqRgs5q7nFAAKpCUvkj6T6GJK9i

[5] https://github.com/anza-xyz/agave/pull/5754#discussion_r2039843254

Remediation

The developers remedied this by using the network’s advertised minimum stake, instead of the
hardcoded 1 SOL. This fix was done in PR 80.

35 / 40

https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/solo_validator/redeem_yt_for_stake.rs#L152
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/solo_validator/redeem_yt_for_stake.rs#L152
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/solo_validator/deposit_sol.rs#L145
https://github.com/pyefi/pye-program-library/blob/1048c402a9337494a55f5ab85e5bcd20f171fc71/programs/bonds/src/instructions/solo_validator/deposit_sol.rs#L145
https://github.com/anza-xyz/solana-sdk/blob/0f9989d0f2f6aa5328124084e20f587446bda79b/feature-set/src/lib.rs#L396
https://github.com/anza-xyz/solana-sdk/blob/0f9989d0f2f6aa5328124084e20f587446bda79b/feature-set/src/lib.rs#L396
https://explorer.solana.com/address/9onWzzvCzNC2jfhxxeqRgs5q7nFAAKpCUvkj6T6GJK9i
https://github.com/anza-xyz/agave/pull/5754#discussion_r2039843254
https://github.com/pyefi/pye-program-library/pull/80

Security Audit - Pye Fi

A About Neodyme
Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully under-
stand every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competi-
tions, called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption,
reverse engineering complicated algorithms, and much more. Through the years, many of our team
members have won national and international hacking competitions, and keep ranking highly among
some of the hardest CTF events worldwide. In 2020, some of our members started experimenting
with validators and became active members in the early Solana community. With the prospect of an
interesting technical challenge and bug bounties, they quickly encouraged others from our CTF team
to look for security issues in Solana. The result was so successful that after reporting several bugs, in
2021, the Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

36 / 40

Security Audit - Pye Fi

B Methodology
We are not checklist auditors.

In fact, we pride ourselves on that. We adapt our approach to each audit, investing considerable time
into understanding the program upfront and exploring its expected behavior, edge cases, invariants,
and ways in which the latter could be violated.

We use our uniquely deep knowledge of Solana internals, and our years-long experience in auditing
Solana programs to find bugs that others miss. We often extend our audit to cover off-chain compo-
nents in order to see how users could be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list here.

Select Common Vulnerabilities

Our most common findings are still specific to Solana itself. Among these are vulnerabilities such as
the ones listed below:

• Insufficient validation, such as:
‣ Missing ownership checks
‣ Missing signer checks
‣ Signed invocation of unverified programs
‣ Account confusions
‣ Missing freeze authority checks
‣ Insufficient SPL account verification
‣ Dangerous user-controlled bumps
‣ Insufficient Anchor account linkage

• Account reinitialization vulnerabilities
• Account creation DoS
• Redeployment with cross-instance confusion
• Missing rent exemption assertion
• Casting truncation
• Arithmetic over- or underflows
• Numerical precision and rounding errors
• Anchor pitfalls, such as accounts not being reloaded
• Non-unique seeds
• Issues arising from CPI recursion
• Log truncation vulnerabilities
• Vulnerabilities specific to integration of Token Extensions, for example unexpected external

token hook calls

37 / 40

Security Audit - Pye Fi

Apart from such Solana-specific findings, some of the most common vulnerabilities relate to the
general logical structure of the contract. Specifically, such findings may be:

• Errors in business logic
• Mismatches between contract logic and project specifications
• General denial-of-service attacks
• Sybil attacks
• Incorrect usage of on-chain randomness
• Contract-specific low-level vulnerabilities, such as incorrect account memory management
• Vulnerability to economic attacks
• Allowing front-running or sandwiching attacks

Miscellaneous other findings are also routinely checked for, among them:
• Unsafe design decisions that might lead to vulnerabilities being introduced in the future

‣ Additionally, any findings related to code consistency and cleanliness
• Rug pull mechanisms or hidden backdoors

Often, we also examine the authority structure of a contract, investigating their security as well as the
impact on contract operations should they be compromised.

Over the years, we have found hundreds of high and critical severity findings, many of which are highly
nontrivial and do not fall into the strict categories above. This is why our approach has always gone
way beyond simply checking for common vulnerabilities. We believe that the only way to truly secure
a program is a deep and tailored exploration that covers all aspects of a program, from small low-level
bugs to complex logical vulnerabilities.

38 / 40

Security Audit - Pye Fi

C Vulnerability Severity Rating
We use the following guideline to classify the severity of vulnerabilities. Note that we assess each
vulnerability on an individual basis and may deviate from these guidelines in cases where it is well-
founded. In such cases, we always provide an explanation.

Severity Description

CRITICAL Vulnerabilities that will likely cause loss of funds. An attacker can trigger them
with little or no preparation, or they are expected to happen accidentally.
Effects are difficult to undo after they are detected.

HIGH Bugs that can be used to set up loss of funds in a more limited capacity, or to
render the contract unusable.

MEDIUM Bugs that do not cause direct loss of funds but that may lead to other
exploitable mechanisms, or that could be exploited to render the contract
partially unusable.

LOW Bugs that do not have a significant immediate impact and could be fixed easily
after detection.

INFORMATIONAL Bugs or inconsistencies that have little to no security impact, but are still
noteworthy.

Additionally, we often provide the client with a list of nit-picks, i.e. findings whose severity lies below
Informational. In general, these findings are not part of the report.

39 / 40

Security Audit - Pye Fi

Neodyme AG

Dirnismaning 55
Halle 13
85748 Garching
Germany

E-Mail: contact@neodyme.io

https://neodyme.io

40 / 40

mailto:contact@neodyme.io
https://neodyme.io

	Executive Summary
	Introduction
	Summary of Findings

	Scope
	Project Overview
	Functionality
	Overview
	Bond Types
	Fees

	On-Chain Data and Accounts
	Data-Storing Accounts
	Other PDAs

	Instructions
	Global Instructions
	LST Bond Instructions
	Solo Validator Bond Instructions

	Authority Structure
	Upgrade Authority
	Global Admin
	Halt Admin

	Findings
	[ND-PYE-HI-01] Jito tips can be stolen
	Description
	Location
	Relevant Code
	Remediation

	[ND-PYE-MD-01] Delinquency-triggered stake deactivation is not handled and will lead to bricked instructions
	Description
	Locations
	Relevant Code
	Remediation

	[ND-PYE-MD-02] Incorrect token program usage means some users will be unable to redeem
	Description
	Locations
	Relevant Code
	Remediation

	[ND-PYE-MD-03] SoloValidator maturity handling can be DoSed, locking funds
	Description
	Location
	Relevant Code
	Remediation

	[ND-PYE-MD-04] Linear YT calculation skews payout function, making later deposits more profitable
	Description
	Location
	Mitigation Suggestion
	Remediation

	[ND-PYE-LO-01] Canonical bonds can be DoSed via misconfiguration
	Description
	Location
	Remediation

	[ND-PYE-LO-02] Epoch end date estimation can be significantly skewed
	Description
	Remediation

	[ND-PYE-LO-03] Issuing is possible before bond.issuance_ts
	Description
	Remediation

	[ND-PYE-IN-01] No global pause functionality
	Description
	Remediation

	[ND-PYE-IN-02] Incorrect calculation in UpdateLiquidReserve
	Description
	Location
	Remediation

	[ND-PYE-IN-03] Bond domains should be separated better
	Description
	Remediation

	[ND-PYE-IN-04] DepositSolMsol can be called with a non-marinade LST bond
	Description
	Remediation

	[ND-PYE-IN-05] Minimum delegation is not 1 SOL
	Description
	Location
	Remediation

	About Neodyme
	Methodology
	Select Common Vulnerabilities

	Vulnerability Severity Rating

