
Security Audit - P-Token

conducted by Neodyme AG

Lead Auditor: Nico Gründel

Second Auditor: Sebastian Fritsch

June 12, 2025



Security Audit - P-Token

Table of Contents
1 Executive Summary 3

Introduction 42
Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Scope 5

P-Token Overview 6
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
On-Chain Data and Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Authorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4

Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Pinocchio Overview 10

Fuzzing P-Token with Riverguard 106
Investigating the impact on CU usage on mainnet . . . . . . . . . . . . . . . . . . . . . . . 11

7 Findings 11

Appendices

A About Neodyme 12

Methodology 13B
Select Common Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

C Vulnerability Severity Rating 15

2 / 16



Security Audit - P-Token

1 Executive Summary
Neodyme audited Anza’s new implementation of the Solana token program, called P-Token, from
April 2025 until June 2025. Part of this audit was a review of the new smart contract library Pinocchio,
which is a more efficient replacement of the Solana Program library.

As P-Token is supposed to be a drop-in replacement for the current token program, Neodyme also
considered whether edge-case behaviour is identical, including whether error codes are produced
with the right priority.

According to Neodymes Rating Classification, 0 security relevant and 0 informational were found.
The number of findings identified throughout the audit, grouped by severity, can be seen in Figure 1.

Critical 0

High 0

Medium 0

Low 0Se
ve

rit
y

Informational 0

Figure 1: Overview of Findings

Neodyme delivered the Anza team a list of nit-picks and additional notes that are not part of this
report. Furthermore, Neodyme implemented a new fuzzcase into Riverguard. This fuzzcase, running
over multiple months, has not spotted any divergence of behaviour in any transaction executed on
mainnet when replacing the old token program with P-Token. In addition, it has allowed us to precisely
measure the impact of replacing SPL-Token with P-Token. We will explore this in Section 6.

3 / 16

https://riverguard.neodyme.io


Security Audit - P-Token

2 Introduction
From April 2025 until June 2025, Anza engaged Neodyme to do a detailed security analysis of Pinoc-
chio and P-Token. Two senior security researchers from Neodyme conducted independent full audits
of both the library and the smart contract between the 23th of April 2025 and the 12th of June 2025.
Both auditors have a long track record of finding critical and other vulnerabilities in Solana programs,
as well as in Solana’s core code itself. Both have audited and reviewed the original token program
multiple times. As the longest-standing auditing firm in the Solana ecosystem, Neodyme has helped
to uncover and fix multiple footguns both in the token program and the Solana program library over
the years, supporting the development of both intimately.

The audit focused on the usability of Pinocchio as a replacement for the Solana program library from
a security perspective, and on ensuring the behaviour of P-Token is indistinguishable from the current
token program. We present our work in the following sections.

Neodyme would like to emphasise the high quality of Anza’s work. A lot of effort has gone into making
sure that P-Token behaves identically to the token program, including a fuzzing harness, which found
all of the issues that Neodyme flagged during the audit.

Summary of Findings

In total, the audit revealed:

0 critical 0 high-severity 0 medium-severity 0 low-severity 0 informational

issues.

4 / 16

https://neodyme.io


Security Audit - P-Token

3 Scope
The contract audit’s scope comprised two major components:

• Primarily, making sure that P-Token behaves exactly like the old Solana token program
• Additionally, evaluating Pinocchio for security footguns

Neodyme considers the source code, located at https://github.com/anza-xyz/pinocchio and https://
github.com/solana-program/token, in scope for this audit. Third-party dependencies are not in scope.

Relevant source code revisions are:

• 4c3fabd685e30b27bbc8f5d515626177dd720a02 · P-Token
• 837535f244a8f995e11266a52471a5cd3e3e548f · Pinocchio

5 / 16

https://github.com/anza-xyz/pinocchio
https://github.com/solana-program/token
https://github.com/solana-program/token


Security Audit - P-Token

4 P-Token Overview
This section briefly outlines P-Token’s functionality, design, and architecture, followed by a detailed
discussion of all related authorities.

Functionality

The old token program, and now P-Token, provides the backbone of the entire Solana DeFi ecosystem.
All token balances, movements, mints, burns, etc. are managed by this smart contract.

Tokens are stored in token accounts, which are controlled by an authority (owner). The type of token
is represented by a mint, which itself is represented by its own account. Tokens can be minted by
the relevant authority if set, they can be burned, and they can be transferred. Token accounts can be
frozen by a freeze authority, which prevents tokens from being moved.

The owner of a token accounts can delegate tokens to a seperate authority, allowing that authority to
move at most the delegated amount from the account. The delegation can be revoked at any time by
the owner.

In addition, a simple 𝑚 of 𝑛 multisig implementation is provided. All authorities (including the
delegate), both on the token account and the mint, can also be one of these multisig accounts instead.

In addition to the features of the old token program, P-Token provides a batch instruction,
which allows to batch multiple token operations into a single instruction, as well as the
WithdrawExcessLamports instruction, that allows authorities to withdraw accounts above the rent-
excempt minimum from all account types.

On-Chain Data and Accounts

There are three types of accounts: Mint, representing a token type, Account, representing an account
that holds tokens and Multisig, which can be used in place of any of the authorities. The on-chain
representation of these accounts is identical to the old version of the Solana token program. The types
are distinguished by the length of the accounts, which are always fixed for each type and distinct from
each other.

Mint stores an optional mint authority, the total supply of the token, the number of decimals the token
has, a flag whether the account is intialized, and an optional freeze authority.

Account stores the following data:
• The associated mint
• The owner
• The amount of the token that is held in the account
• Optionally, the delegate and delegated amount

6 / 16



Security Audit - P-Token

• The accounts state, which can be either Initialized or Frozen (or Uninitialized in case the
account hasn’t been initialized yet)

• A flag that indicates whether a token account represents native SOL
• The amount of SOL that is required as the rent-exempt reserve when this is a native account
• An optional close authority

Multisig stores the amount of signers required for a valid signatures, a flag whether the account is
initialized and the list of signers that are part of this multisig (at most 11).

Authorities

Mints have 2 different authorities, both are optional:
• The mint authority is able to mint arbitrary amounts of new tokens. If the mint authority is not

set, no new tokens will be able to be minted from this account. Only the mint authority can
update or clear this field.

• The freeze authority is able to freeze and thaw any token account associated with this mint. If
this authority isn’t set, token accounts associated with this mint can’t be frozen or thawed. Only
the freeze authority can update or clear this field.

Accounts have 3 different authorities:
• The owner has the ability to transfer, burn, close the account, delegate funds or change any

authorities on a token account. The owner can only be changed by the owner itself.
• The close authority has the ability to close the account. All funds are transferred to an account of

the close authorities choosing, including any SOL currently on the account. The close authority
can only be changed by the owner.

• The delegate is an optional authority that is allowed to burn or transfer whatever amount the
owner has delegated to it. Both the delegate and the delegated amount can only be changed by
the owner.

Instructions

The contract has a total of 27 instructions, which we briefly summarize here.

Instruction Category Summary

InitializeAccount Permissionless Initializes a new Account. Takes the owner
and rent sysvar as an account

InitializeAccount2 Permissionless Identical to InitializeAccount, but parses
the pubkey of the owner from the instruc-
tion data

7 / 16



Security Audit - P-Token

Instruction Category Summary

InitializeAccount3 Permissionless Identical to InitializeAccount, but parses
the pubkey of the owner from the instruc-
tion data and doesn’t require the rent
sysvar as a passed account

InitializeMint Permissionless Initializes a new Mint. Takes the rent sysvar
as an account

InitializeMint2 Permissionless Identical to InitializeAccount, but
doesn’t require the rent sysvar as a passed
account

InitializeMultisig Permissionless Initializes a new Multisig. Takes the rent
sysvar as an account

InitializeMultisig2 Permissionless Identical to InitializeAccount, but
doesn’t require the rent sysvar as a passed
account

MintTo Mint authority Mints a certain amount of tokens to a token
account belonging to this mint

MintTo2 Mint authority Identical to MintTo, but checks that the
mint has the expected amount of decimals

FreezeAccount Freeze authority Freezes a token account, preventing tokens
from being transfered or burned

ThawAccount Freeze authority Thaws a previously frozen token account

Approve Owner only Sets the delegate and delegate amount on
a token account

ApproveChecked Owner only Identical to Approve, but checks that the
mint has the expected amount of decimals

Revoke Owner only Clears the delegate and delegated amount

CloseAccount Owner or
close authority

Closes a token account and transfers all to-
kens and SOL on the account to a different
account

Transfer Owner or
delegate

Transfers tokens to a different account as-
sociated with the same mint

TransferChecked Owner or
delegate

Identical to Transfer, but checks that the
mint has the expected amount of decimals

Burn Owner or
delegate

Burns a certain amount of tokens

8 / 16



Security Audit - P-Token

Instruction Category Summary

BurnChecked Owner or
delegate

Identical to Burn, but checks that the mint
has the expected amount of decimals

SyncNative Permissionless Syncs a native token account with the un-
derlying SOL balance of the token account

WithdrawExcessLamports Authority only Withdraws any SOL above the rent excempt
threshold from a token account, a mint
or a multisig account. For token accounts
the owner has to sign, for mints the mint
authority has to sign (or if there is no mint
authority, alternatively the mint account
itself can sign for this operation), and for
multisig 𝑚 out of the 𝑛 authorities have to
sign. This is unique to P-Token

SetAuthority Authority only Can be used to set the mint or freeze
authorities on a mint or the owner or close
authority on an account

InitializeImmutableOwner Permissionless Noop that only fails if the first passed
account is not an initialized token account.
Only there to provide the same interface as
token2022

AmountToUiAmount Permissionless Takes an amount of tokens and formats it
corresponding to the amount of decimals
on the given mint, returning the resulting
string in the return data

UiAmountToAmount Permissionless The inverse of AmountToUiAmount

GetAccountDataSize Permissionless Returns the required size to store an
Account in the return data

Batch Permissioned based on
executed instructions

Executes multiple instructions in a single
call, saving on CUs by reducing CPI calls.
This is unique to P-Token

9 / 16



Security Audit - P-Token

5 Pinocchio Overview
Pinocchio is a lightweight replacement for the Solana program library, with a focus on reducing CU
usage. The overall interface remains very close to the original, however, with the exception of a new
logging library and a lazy entrypoint, which allows for more control over the parsing of the data passed
to the smart contract by the runtime.

Unlike in the Solana program library, there are now a multitude of unsafe-marked functions and
methods. These exist when checks might not always be necessary, such as when borrowing account
data. This is a good pattern, as the user of the library has to explicitly wrap the function call into an
unsafe block, which forces them to think about what they’re doing is actually safe, while allowing
more experienced developers to save CUs where possible.

In order to cut down on the number of dependencies, many data types have been redefined in Pinoc-
chio. This reduces the overall risk of supply chain attacks and reduces the size of binaries, cutting down
on state bloat and rent costs. However, this is also the primary challenge in the adoption of Pinocchio,
as interacting with other smart contracts that don’t have an interface written for Pinocchio either
requires falling back on the types in the old Solana program library or implementing the interface
yourself. Pinocchio itself provides interfaces for token, token2022, associated-token-account, memo
and system.

Syscalls, memory management, sysvars and CPI work analogously to the old Solana program library.
Some interfaces have changed slightly to accommodate the new types.

Logging has been completely overhauled. The rust format! macro is very expensive in terms of CU,
which is why it shouldn’t be used in smart contracts. Pinnochio now offers an alternative logging
macro, based on a Logger implementation that is able to build strings from commonly-used types
without too much CU overhead.

6 Fuzzing P-Token with Riverguard
We have implemented a new fuzzcase for Riverguard. It executes all transactions on mainnet that
uses the token program in real time, and replaces its ELF with P-Token. We can then check whether all
accounts are identical at the end of the transaction, as well as that all of the metadata matches.

As P-Token uses significantly fewer compute units, we can’t match those, and we can’t fully match the
program’s logs, as CU usage is part of that. In addition, transactions that originally failed because of
exceeding the compute budget sometimes succeeded because using P-Token instead of the old token
program resulted in the transaction requiring less CUs, for which we put an exception in place in order
to not get too many false positives.

10 / 16

https://riverguard.neodyme.io


Security Audit - P-Token

After running for multiple months, we have not found a single instance of a transaction that was
executed on mainnet resulting in different account data or a different error code due to behaviour
between P-Token and the old token program.

Investigating the impact on CU usage on mainnet

This fuzzcase also allowed us to very easily determine the exact amount of CUs that would be saved
on mainnet in total by the replacement of the old token program with P-Token. As P-Token can be
compiled both with logging and without logging, we investigated the impact of both.

From 2025-08-03 up to and including all of 2025-08-11, the replacement would have saved a total of
8.90T CUs with logging enabled, and 9.14T CUs with logging disabled. According to a dune query, the
chain processed a total of 74.50T CUs in that time. This corresponds to the following savings:

Variant CUs saved (absolute) Relative amount of used blockspace saved

With logging 8.90T 12.0%

Without logging 9.14T 12.3%

Note that these are not the savings relative to just the blockspace used up by the token program. These
are the savings relative to the entire used blockspace, including failed and vote transactions.

7 Findings
We’re happy to share that we did not find any issues with the P-Token program or with Pinocchio. Both
are heavily based on already existing and established code bases. During the initial auditing phase
we discovered some behavioral missmatches between P-Token and the old Solana token program,
however these were already spotted by Anza’s fuzzer and remediated in a pull request, so we won’t
be listing them here.

11 / 16

https://dune.com/queries/5272996


Security Audit - P-Token

A About Neodyme
Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully under-
stand every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competi-
tions, called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption,
reverse engineering complicated algorithms, and much more. Through the years, many of our team
members have won national and international hacking competitions, and keep ranking highly among
some of the hardest CTF events worldwide. In 2020, some of our members started experimenting
with validators and became active members in the early Solana community. With the prospect of an
interesting technical challenge and bug bounties, they quickly encouraged others from our CTF team
to look for security issues in Solana. The result was so successful that after reporting several bugs, in
2021, the Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

12 / 16



Security Audit - P-Token

B Methodology
We are not checklist auditors.

In fact, we pride ourselves on that. We adapt our approach to each audit, investing considerable time
into understanding the program upfront and exploring its expected behavior, edge cases, invariants,
and ways in which the latter could be violated.

We use our uniquely deep knowledge of Solana internals, and our years-long experience in auditing
Solana programs to find bugs that others miss. We often extend our audit to cover off-chain compo-
nents in order to see how users could be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list here.

Select Common Vulnerabilities

Our most common findings are still specific to Solana itself. Among these are vulnerabilities such as
the ones listed below:

• Insufficient validation, such as:
‣ Missing ownership checks
‣ Missing signer checks
‣ Signed invocation of unverified programs
‣ Account confusions
‣ Missing freeze authority checks
‣ Insufficient SPL account verification
‣ Dangerous user-controlled bumps
‣ Insufficient Anchor account linkage

• Account reinitialization vulnerabilities
• Account creation DoS
• Redeployment with cross-instance confusion
• Missing rent exemption assertion
• Casting truncation
• Arithmetic over- or underflows
• Numerical precision and rounding errors
• Anchor pitfalls, such as accounts not being reloaded
• Non-unique seeds
• Issues arising from CPI recursion
• Log truncation vulnerabilities
• Vulnerabilities specific to integration of Token Extensions, for example unexpected external

token hook calls

13 / 16



Security Audit - P-Token

Apart from such Solana-specific findings, some of the most common vulnerabilities relate to the
general logical structure of the contract. Specifically, such findings may be:

• Errors in business logic
• Mismatches between contract logic and project specifications
• General denial-of-service attacks
• Sybil attacks
• Incorrect usage of on-chain randomness
• Contract-specific low-level vulnerabilities, such as incorrect account memory management
• Vulnerability to economic attacks
• Allowing front-running or sandwiching attacks

Miscellaneous other findings are also routinely checked for, among them:
• Unsafe design decisions that might lead to vulnerabilities being introduced in the future

‣ Additionally, any findings related to code consistency and cleanliness
• Rug pull mechanisms or hidden backdoors

Often, we also examine the authority structure of a contract, investigating their security as well as the
impact on contract operations should they be compromised.

Over the years, we have found hundreds of high and critical severity findings, many of which are highly
nontrivial and do not fall into the strict categories above. This is why our approach has always gone
way beyond simply checking for common vulnerabilities. We believe that the only way to truly secure
a program is a deep and tailored exploration that covers all aspects of a program, from small low-level
bugs to complex logical vulnerabilities.

14 / 16



Security Audit - P-Token

C Vulnerability Severity Rating
We use the following guideline to classify the severity of vulnerabilities. Note that we assess each
vulnerability on an individual basis and may deviate from these guidelines in cases where it is well-
founded. In such cases, we always provide an explanation.

Severity Description

CRITICAL Vulnerabilities that will likely cause loss of funds. An attacker can trigger them
with little or no preparation, or they are expected to happen accidentally.
Effects are difficult to undo after they are detected.

HIGH Bugs that can be used to set up loss of funds in a more limited capacity, or to
render the contract unusable.

MEDIUM Bugs that do not cause direct loss of funds but that may lead to other
exploitable mechanisms, or that could be exploited to render the contract
partially unusable.

LOW Bugs that do not have a significant immediate impact and could be fixed easily
after detection.

INFORMATIONAL Bugs or inconsistencies that have little to no security impact, but are still
noteworthy.

Additionally, we often provide the client with a list of nit-picks, i.e. findings whose severity lies below
Informational. In general, these findings are not part of the report.

15 / 16



Security Audit - P-Token

Neodyme AG

Dirnismaning 55
Halle 13
85748 Garching
Germany

E-Mail: contact@neodyme.io

https://neodyme.io

16 / 16

mailto:contact@neodyme.io
https://neodyme.io

	Executive Summary
	Introduction
	Summary of Findings

	Scope
	P-Token Overview
	Functionality
	On-Chain Data and Accounts
	Authorities
	Instructions

	Pinocchio Overview
	Fuzzing P-Token with Riverguard
	Investigating the impact on CU usage on mainnet

	Findings
	About Neodyme
	Methodology
	Select Common Vulnerabilities

	Vulnerability Severity Rating

