Security Audit - Neon EVM

Lead Auditor: Robert Reith
Second Auditor: Sebastian Fritsch
Second Auditor: Mathias Scherer

Administrative Lead: Thomas Lambertz

April 16" 2024

Security Audit - Neon EVM

Table of Contents

Executive Summary

1 Introduction

FindingsSummary e e e

2 Scope

3 Project Overview

Account ReviSIONS e e e e e e e e e e e e
Balance Accounts L e e e e
Custom GasTOKENS v i e e e e e e e e e e
solana_call e e e

4 Findings

ND-NN2-C1 [Critical; Fixed] State corruption throughreentrancy
ND-NN2-H1 [High; Fixed] STATICCALL properties violated through reentrancy
ND-NN2-M1 [Medium; Fixed] Balance Accounts Lack Account Revisions
ND-NN2-M2 [Medium; Fixed] CALLCODE implementation does not adhere to specification .
ND-NN2-L1 [Low; Fixed] SELFDESTRUCT does not conformto EIP-6780
ND-NN2-I1 [Info; WIP] Revisioncanoverflow

Appendices
A Methodology
B Vulnerability Severity Rating

C About Neodyme

o O O &

-

20
21

22

2/23

Security Audit - Neon EVM

Executive Summary

Neodyme audited updates to Neon’ on-chain EVM program during spring 2024. Due to the specific
threat model of evm programs, the scope of this audit included implementation security, overall design
and architecture. The auditors found that Neon’s EVM program comprised a clean design and high
code quality. According to Neodyme’s Rating Classification, 1 critical and 1 high vulnerabilities and 2
medium-severity issues were found. The number of findings identified throughout the audit, grouped
by severity, can be seen in Figure 1.

Issues found

critical high medium low info

Figure 1: Overview of Findings

All findings were reported to the Neon developers and addressed promptly. The security fixes were
verified for completeness by Neodyme. In addition to these findings, Neodyme delivered the Neon
team a list of nit-picks and additional notes that are not part of this report.

3/23

Security Audit - Neon EVM

Introduction

During spring 2024, Neon commissioned Neodyme to conduct a detailed security analysis of multiple
updates to Neon’ on-chain EVM program.

Three senior auditors performed the audit between 1st of March and 1st of April. This report details all
findings from this time span.

The audit mainly focused on the contract’s technical security, but also considered its design and
architecture. After the introduction, this report details the audit’s Scope, gives a brief Overview of the
Contract’s Design, then goes on to document our Findings.

Neodyme would like to emphasize the high quality of Neon’ work. Neon’ team always responded
quickly and competent to findings of any kind. Their in-depth knowledge about evm programs
was apparent during all stages of the cooperation. Evidently, Neon invested significant effort and
resources into their product’s security. Their code quality is above standard, as the code is very well
documented, naming schemes are clear, and the overall architecture of the program is well thought
out, clean and coherent. The tests are covering all important cases. The contract’s source code has
no unnecessary dependencies, relying mainly on its own custom framework.

Findings Summary

During the audit, 5 security-relevant and 1 informational findings were identified. Neon remediated
all of those findings before the protocol’s launch.

In total, the audit revealed:
1 critical+ 1 high-severity + 2 medium-severity « 1 low-severity « 1 informational

issues.

The highest severity finding addresses a vulnerability where a reentrancy issue allowed for state
corruption. The second highest severity finding addresses another issue with reentrancy, invalidating
STATICCALL properties. Both of these findings were remediated by removing the ability to reenter
into Neon altogehter.

All findings are detailed in section Findings.

4/23

https://neonevm.org
https://neodyme.io

Security Audit - Neon EVM

Scope

The contract audit’s scope comprised of two major components:

« Implementation security of the source code
« Security of the overall design

All of the source code, located at https://github.com/neonlabsorg/neon-evm, is in scope of this audit.
However, third-party dependencies are not. As Neon only relies on widely used standard libraries, this
does not seem problematic. Relevant source code revisions are:

e 73237d331bb3806100c2e09bfe8c958809eab320 « Start of the audit
+ 013c3599d2a820829f3786dc0648e954398d8d T « Security Fixes Completed
¢ 0e13c3599d2a820829f3786dc0648e954398d8d T « Last Reviewed Revision

5/23

https://github.com/neonlabsorg/neon-evm

Security Audit - Neon EVM

Project Overview

This section briefly outlines the updates to Neon’ EVM functionality, which were in scope for this audit.
To get a full description of the project, please read our initial audit report. In total, 4 significant new
features were added to Neon in this audit: Account revisions, balance accounts, custom gas tokens
and solana_call.

Account Revisions

One of the major changes is the introduction of revisions for Neon accounts. This change enables
stepped transactions to execute in parallel. In previous versions, the EVM locked accounts that were
used by a stepped transaction to prevent other transactions from changing them between execution
cycles. With the replacement of account blocking with account revisions, transactions can now always
be executed and don’t have to wait for previous transactions to finish that access the same accounts.
Revisions are counters that are stored within the StorageAccounts and ContractAccounts, which get
incremented for each transaction that changes a value within these accounts. This enables the EVM to
detect changed accounts before continuing a transaction execution. When such a change is detected,
the EVM resets and restarts the execution of the affected transaction. With this process, the program
can ensure that transactions are executed with the latest state of all involved accounts. At the beginning
of our audit, BalanceAccounts didn’t keep track of their revision, shifting the responsibility to smart
contract developers to keep track of the native token balances within their contracts. After raising an
issue regarding this design, Neon implemented revisions for BalanceAccounts as well. In addition to
that, Neon added revisions for arbitrary Solana accounts by using a hash over their owner, lamports,
and data.

Balance Accounts
The update implements a whole new account type, the Balance Account. It is a derivation out of the
former ether account, now splitting native token holding logic from contract logic, and also having a

separate solana account structure holding this information. This change makes particular sense in
combination with account revisions and custom gas tokens.

Custom Gas Tokens

The Neon team decided to add a feature that allows users to pay gas in different tokens. Previously,
users of the Neon EVM had to pay for gas with the Neon token as an equivalent to the Eth token on the

6/23

Security Audit - Neon EVM

Ethereum blockchain. With this new change, the fees can be paid in other tokens, depending on the
smart contract being called. To implement this, Neon uses the chain_-d field within transactions,
which is normally used to differentiate transactions meant for different EVM chains. The original
purpose of this field is that a transaction issued and signed for Neon would not be valid on Ethereum,
because their chain_id differs. Because this field is quite large, a u32, Neon can allocate many
chain_ids and designate a separate gas token for each of them. This update comes with multiple
changes. Firstly, each contract has to define on which chain_1id it is deployed, which also means in
which gas token it holds its native funds. Second, each address can have multiple balance accounts,
one for each chain_d, storing the account’s balance for that particular gas token. Third, any native
token transaction, including all different types of call, is updated to correctly handle chain_-d, for
instance rejecting transfers from one balance account to another if their chain_id doesn’t match.

solana_call

The last change added in this update is the ability of smart contracts on Neon to call arbitrary solana
programs. For this, a new precompile extension has been added which adds a new neon contract
which in turn executes the native solana calls. It also provides some helpful functions to calculate
solana addresses, PDAs, or crate Accounts.

7/23

Security Audit - Neon EVM
Findings

This section outlines all of our findings. They are classified into one of five severity levels, detailed in
Appendix C. In addition to these findings, Neodyme delivered the Neon team a list of nit-picks and
additional notes which are not part of this report.

All findings are listed in Table 2 and further described in the following sections.

Table 1: Findings

Name Severity
[ND-NN2-C1] State corruption through reentrancy Critical
[ND-NN2-H1] STATICCALL properties violated through reentrancy High
[ND-NN2-M17] Balance Accounts Lack Account Revisions Medium
[ND-NN2-M2] CALLCODE implementation does not adhere to specification Medium
[ND-NN2-L1] SELFDESTRUCT does not conform to EIP-6780 Low
[ND-NN2-I1] Revision can overflow Info

8/23

Security Audit - Neon EVM

ND-NN2-C1 - State corruption through reentrancy

Severity Impact Affected Component Status
Critical State Corruption Solana Call Fixed
Description

Neon allows Solana compatibility through precompiles. One of these precompiles is the
SYSTEM_ACCOUNT_CALL_SOLANA precompile, which allows an EVM contract to call Solana
programs. If the EVM transaction is executed in a single Solana transaction, those Solana calls are
executed right in place; in the case of a stepped transaction, those Solana calls are stored and executed
after the EVM instruction has concluded.

Neon allows the external Solana instruction to call Neon again, which enables the following attack:
1. Create a Neon EVM instruction A, which modifies the storage of a contract (e.g. withdrawing on
an ERC20 Contract) 2. Create a Neon EVM instruction B, which calls a contract with the following
procedure: a) Use SYSTEM_ACCOUNT_CALL_SOLANA to call Neon EVM with instruction A. This appends
an ExternalInstruction to the actions, which will be executed in the end. b) Modify the same
contract storage as instruction A (e.g. withdrawing from the same ERC20 Contract but to a different
address). This will queue an EvmSetStorage to be executed in the end. 3. Execute instruction B as a
stepped instruction

After the transaction has concluded, finalize will call apply_state_change. It will execute the
actionsinthe order they were appended. l.e. firstExternalInstruction will be executed and modify
the contract’s storage. Afterwards, SetStorage will be applied, and the contracts will be changed
again, although they have already been changed. This allows, for example, the double spending of an
ERC20 balance.

Location
« evm_loader/program/src/executor/precompile_extension/call_solana.rs#L297
Relevant Code

async fn execute_external_instruction<State: Database>(
state: &mut State,
context: &crate::evm::Context,
instruction: Instruction,
signer_seeds: Vec<Vec<u8>>,

9/23

https://github.com/neonlabsorg/neon-evm/blob/1efefb6c747183db1cf2e8c1a69c1b3eb8565b73/evm_loader/program/src/executor/precompile_extension/call_solana.rs#L297

Security Audit - Neon EVM

required_lamports: u64,
) -> Result<Vec<u8>> {
#[cfg(not(target_os = "solana"))]
log::info! ("instruction: {:?}", dinstruction);

let called_program = dinstruction.program_id;
solana_program: :program: :set_return_data(&[]);

for meta in &instruction.accounts {
if meta.pubkey == state.operator() {
return Err(Error::InvalidAccountForCall(state.operator()));

}

Mitigation Suggestion

In our opinion, the core of the bug lies in a missing account revision check after applying an
ExternalInstruction, but our favoured fix would be disallowing reentrancy through an
ExternalInstruction call, asthis would eliminate many edge cases. This can be simply achieved
by checking that the called program_1id is not the neon program itself.

Remediation

In 34a27392d9e7bb935f0121c6b188605e17ac19d5 Neon added a check to disallow reentrancy within
the SYSTEM_ACCOUNT_CALL_SOLANA.

This change prevents any Neon smart contract from reentering into the Neon EVM, by checking if the
Neon EVM program id is present in any of the accounts passed to the CPI.

10/23

https://github.com/neonlabsorg/neon-evm/commit/34a27392d9e7bb935f0121c6b188605e17ac19d5

Security Audit - Neon EVM

ND-NN2-H1 - STATICCALL properties violated through reentrancy

Severity Impact Affected Component Status
High State Corruption STATICCALL Fixed
Description

EIP-214 (https://eips.ethereum.org/EIPS/eip-214) introduced the STATICCALL opcode, which disallows
any modifications to the global state during the call. This can be circumvented in NEON by using an
ExternalInstruction,which calls Neon again.

Location
» /evm_loader/program/src/executor/precompile_extension/call_solana.rs#L31
Relevant Code

pub async fn call_solana<State: Database>(
state: &mut State,
address: &Address,
input: &[u8],
context: &crate::evm::Context,
// Underscore indicates variable is unused / unchecked in this
function
_is_static: bool,
) -> Result<Vec<u8>> {

Mitigation Suggestion
Add acheck foris_static != trueincall_solana
Remediation

Neon followed our suggestion and implemented a fix by adding a check fo is_static in pull request
34a27392d9e7bb935f0121c6b188605e17ac19d5.

11/23

https://github.com/neonlabsorg/neon-evm/blob/1efefb6c747183db1cf2e8c1a69c1b3eb8565b73/evm_loader/program/src/executor/precompile_extension/call_solana.rs#L31
https://github.com/neonlabsorg/neon-evm/commit/34a27392d9e7bb935f0121c6b188605e17ac19d5

Security Audit - Neon EVM

ND-NN2-M1 - Balance Accounts Lack Account Revisions

Severity Impact Affected Component Status
Medium Unexpected Behaviour Balance Accounts Fixed
Description

We found that while contract- and storage-accounts use account revisions to prevent cross-
contamination during optimistic execution, balance-accounts are do not have revisions. As we
understand this was a conscious decision as in most cases changes to balances are accompanied by
changes to state. However there are some theoretic cases where contracts use balance as state, and
their execution integrity would be compromised in a significant way. To ensure integrity in all possible
cases, we recommend also adding revisions to balance accounts.

Location
+ /evm_loader/program/src/account/ether_balance.rs#L18-L30
Relevant Code

#[repr(C, packed)]
pub struct Header {
pub address: Address,
pub chain_id: u64,
pub trx_count: u64,
pub balance: U256,
}
impl AccountHeader for Header {
const VERSION: u8 = 0;
}

pub struct BalanceAccount<'a> {
account: AccountInfo<'a>,

}

Mitigation Suggestion

Add account revisions to balance accounts.

12/23

https://github.com/neonlabsorg/neon-evm/blob/v1.9.x/evm_loader/program/src/account/ether_balance.rs#L18-L30

Security Audit - Neon EVM

Remediation

Neonimplemented revisions for balance accountsin commit bdaf787¢7268dc5f39334846fc512816d5c29386.
In addition to that, they separated the operator balance account for gas payments, so that changes

to this account will not affect transaction execution. Furthermore, Neon added the condition
that stepped transactions are only reset if accounts that have been changed have already been
accessed by the transaction before the change has happened. This change was added in commit
0e13c3599d2a820829f3786dc0648e954398d8df.

13/23

https://github.com/neonlabsorg/neon-evm/pull/383/commits/bdaf787c7268dc5f39334846fc512816d5c29386
https://github.com/neonlabsorg/neon-evm/pull/388/commits/0e13c3599d2a820829f3786dc0648e954398d8df

Security Audit - Neon EVM

ND-NN2-M2 - CALLCODE implementation does not adhere to specification

Severity Impact Affected Component Status
Medium Unexpected Behaviour CALLCODE Fixed
Description

CALLCODE is an EVM instruction similar to DELEGATECALL. It differs from DELEGATECALL in two key
aspects. Firstly, CALLCODE allows the modification of the msg. value property for the to-be-called
contract. Secondly, the msg.sender property will be set to the contract that calls via CALLCODE,
while DELEGATECALL will keep the msg. sender asthe EOA. This second part is missing in the current
CALLCODE implementation and can lead to unexpected consequences for an contract using CALLCODE

Location
« /evm_loader/program/src/evm/opcode.rs#1.1194-11198
Relevant Code

pub async fn opcode_callcode(&mut self, backend: &mut B) -> Result<
Action> {
let gas_limit = self.stack.pop_u256()?;
let address = self.stack.pop_address()?;
let value = self.stack.pop_u256()?;
/] L...]
let chain_id = self.context.contract_chain_id;
let context = Context {
value,
code_address: Some(address),
..self.context
s
/[l [...]

self.fork(
Reason::Call,
chain_id,
context,
code,
call_data,

14/23

https://github.com/neonlabsorg/neon-evm/blob/4cbebed1f8d6c8f89a33ef0aacabfd6bbb7ab508/evm_loader/program/src/evm/opcode.rs#L1194-L1198

Security Audit - Neon EVM

Some(gas_limit),
)5
backend.snapshot();

/] [...]
log_data(&[b"ENTER", b"CALLCODE", address.as_bytes()]);

if backend.balance(self.context.caller, chain_id).await? <
value {
return Err(Error::InsufficientBalance(
self.context.caller,

chain_id,
value,
))s
+
self.opcode_call_precompile_impl(backend, &address).await
+
Mitigation Suggestion

This bug can be easily fixed by setting context.caller to the address of the current contract in

opcode_callcode
Remediation

Neon followed our suggestion and implemented a fix by adding the suggested context change setting
context.caller to the address of the current contract in opcode_callcode.

The fix is implemented in pull request 975be3d78d40822¢747eca33ddf48c8d2706401b.

15/23

https://github.com/neonlabsorg/neon-evm/commit/975be3d78d40822c747eca33ddf48c8d2706401b

Security Audit - Neon EVM

ND-NN2-L1 - SELFDESTRUCT does not conform to EIP-6780

Severity Impact Affected Component Status
Low Unexpected Behaviour SELFDESTRUCT Fixed
Description

EIP-6780 (https://eips.ethereum.org/EIPS/eip-6780) proposes changes to the behaviour of the
SELFDESTRUCT opcode. Neon partially implements those changes but still deletes previously written
data if SELFDESTRUCT was executed in a transaction that is not the same as the contract calling
SELFDESTRUCT was created.

Furthermore, if SELFDESTRUCT is called in a transaction that is not the same as the contract calling
SELFDESTRUCT was created and “if the target is the same as the contract calling SELFDESTRUCT that
Ether will be burnt”. This functionality is currently missing in Neon.

Location
» /evm_loader/program/src/executor/action.rs#L53-L83
Relevant Code

pub fn filter_selfdestruct(actions: Vec<Action>) -> Vec<Action> {
// Find all the account addresses which are scheduled to
EvmSelfDestruct
let accounts_to_destroy: std::collections::HashSet<_> = actions
dter ()
.filter_map(|action| match action {
Action::EvmSelfDestruct { address } => Some(*address),
_ => None,
})
.collect();

actions
.dnto_diter ()
.filter(]action| {
match action {
// We always apply ExternalInstruction for Solana

accounts
// and NeonTransfer + NeonWithdraw
Action::ExternalInstruction { .. }
| Action::Transfer { .. }

16/23

https://github.com/neonlabsorg/neon-evm/blob/4cbebed1f8d6c8f89a33ef0aacabfd6bbb7ab508/evm_loader/program/src/executor/action.rs#L53-L83

Security Audit - Neon EVM

| Action::Burn { .. } => true,
// We remove EvmSetStorage|EvmIncrementNonce|EvmSetCode
if account is scheduled for destroy

Action::EvmSetStorage { address, .. }
| Action::EvmSetCode { address, .. }
| Action::EvmIncrementNonce { address, .. } => {

laccounts_to_destroy.contains(address)

}

// SelfDestruct 1is only aplied to contracts deployed 1in
the current transaction

Action::EvmSelfDestruct { .. } => false,

}
1)
.collect()
}
Mitigation Suggestion

We recommend implementing the EIP in full.

Remediation

The Neon team decided to completely remove the SELFDESTRUCT opcode and replacing it with
SENDALL as proposed in EIP-4758. This fix has been proposed and later merged with pull request
d80f39bd7c0315789686906fc41f352a28b3984b.

17/23

https://eips.ethereum.org/EIPS/eip-4758
https://github.com/neonlabsorg/neon-evm/commit/d80f39bd7c0315789686906fc41f352a28b3984b

Security Audit - Neon EVM

ND-NN2-11 - Revision can overflow

Severity Impact Affected Component Status
Info State Corruption Account Revisions WIP
Description

This is a very theoretical attack and we don’t think it is actually feasible or economical right now. In
increment_revision Neon usesawrapping_add toincrement the revision, which is a u32 integer.
This means that after ~4.2 billion transactions, the revision will be the same again. An attacker could
halt a stepped transaction at revision x, execute 232 instructions in between, modify the state, and the
halted transactions would continue on the corrupted state.

From a feasibility perspective, this currently seems impossible. Assuming ~4 simple neon instructions
in a single TX and a (very high) inclusion rate of ~100 TX per block, one could reach ~1000 revision
increments per second, which would need ~50 days of full-time spamming to overflow the revision.
From a financial perspective, this would probably cost around 10 Million USD at current SOL pricing
and wouldn’t stay unnoticed by chain users. Furthermore, the attack could be easily disrupted by
stepping the halted transaction further through a different operator.

Location
« /evm_loader/program/src/account/ether_storage.rs#1286-L295
Relevant Code

pub fn dincrement_revision(&mut self, rent: &Rent, db: &AccountsDB<'a>)
-> Result<()> {
if super::header_version(&self.account) < HeaderWithRevision::
VERSION {
self.header_upgrade(rent, db)?;
}

let mut header = super::header_mut::<HeaderWithRevision> (&self.
account) ;
header.revision = header.revision.wrapping_add(1l);

Ok(())

18/23

https://github.com/neonlabsorg/neon-evm/blob/73237d331bb3806100c2e09bfe8c958809eab320/evm_loader/program/src/account/ether_storage.rs#L286-L295

Security Audit - Neon EVM

Mitigation Suggestion

In general, we would prefer to use a checking_add instead of awrapping_add here, or even better,
replace the revision with a u64.

Remediation

The Neon team proposed a fix where stepped transaction execution would be time-constrained. At
time of this writing, the fix is work in progress, and is scheduled to be added in summer 2024.

19/23

Security Audit - Neon EVM
Methodology

Neodyme prides itself on not being a checklist auditor. We adapt our approach to each audit, investing
considerable time into understanding the program up front, exploring its expected behaviour, edge
cases, invariants, and ways in which the latter could be violated. We use our uniquely deep knowledge
of Solana internals and our years-long experience in auditing Solana programs to even find bugs that
others miss. We often extend our audit to cover off-chain components in order to see how users could
be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list below.

+ Rule out common classes of Solana contract vulnerabilities, such as:

- Missing ownership checks

- Missing signer checks

- Signed invocation of unverified programs
- Solana account confusions

- Redeployment with cross-instance confusion
- Missing freeze authority checks

- Insufficient SPL account verification

- Missing rent exemption assertion

- Casting truncation

- Arithmetic over- or underflows

- Numerical precision errors

« Check for unsafe designs which might lead to common vulnerabilities being introduced in the
future

+ Check for any other, as-of-yet unknown classes of vulnerabilities arising from the structure of
the Solana blockchain

+ Ensure that the contract logic correctly implements the project specifications

« Examine the code in detail for contract-specific low-level vulnerabilities

+ Rule out denial of service attacks

+ Rule out economic attacks

« Check forinstructions that allow front-running or sandwiching attacks

+ Check for rug pull mechanisms or hidden backdoors

20/23

Security Audit - Neon EVM
Vulnerability Severity Rating

Critical Vulnerabilities that will likely cause loss of funds. An attacker can trigger them with little or
no preparation, or they are expected to happen accidentally. Effects are difficult to undo after
they are detected.

High Bugs that can be used to set up loss of funds in a more limited capacity, or to render the contract
unusable.

Medium Bugsthat do not cause direct loss of funds but that may lead to other exploitable mechanisms,
or that could be exploited to render the contract partially unusable.

Low Bugs that do not have a significant immediate impact and could be fixed easily after detection.

Info Bugs or inconsistencies that have little to no security impact.

21/23

Security Audit - Neon EVM
About Neodyme

Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully understand
every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe we have the most qualified auditors for Solana programs in our company. We’ve
also found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

Our team met as participants in hacking competitions called CTFs. There, we competed and collabo-
rated while finding vulnerabilities, breaking encryption, reverse engineering complicated algorithms,
and much more. Through the years, many of our team members have won national and international
hacking competitions and keep ranking highly among some of the hardest CTF events worldwide. In
2020, some of our members started experimenting with validators and became active members of the
early Solana community. With the prospect of an interesting technical challenge and bug bounties,
they quickly encouraged others from our CTF team to look for security issues in Solana. The result was
so successful that after reporting several bugs, in 2021, the Solana Foundation contracted us for source
code auditing. As a result, Neodyme was born.

22/23

Security Audit - Neon EVM

Neodyme AG

Dirnismaning 55

Halle 13

85748 Garching

E-Mail: contact@neodyme.io

https://neodyme.io

23/23

https://neodyme.io

	Executive Summary
	Introduction
	Findings Summary

	Scope
	Project Overview
	Account Revisions
	Balance Accounts
	Custom Gas Tokens
	solana_call

	Findings
	 ND-NN2-C1 [Critical; Fixed] State corruption through reentrancy
	 ND-NN2-H1 [High; Fixed] STATICCALL properties violated through reentrancy
	 ND-NN2-M1 [Medium; Fixed] Balance Accounts Lack Account Revisions
	 ND-NN2-M2 [Medium; Fixed] CALLCODE implementation does not adhere to specification
	 ND-NN2-L1 [Low; Fixed] SELFDESTRUCT does not conform to EIP-6780
	 ND-NN2-I1 [Info; WIP] Revision can overflow

	Methodology
	Vulnerability Severity Rating
	About Neodyme

