
Security Audit - Metaplex Token Metadata

conducted by Neodyme AG

Lead Auditor: Sebastian Fritsch

Second Auditor: Nico Gründel

Administrative Lead: Thomas Lambertz

July 01, 2025

Security Audit - Metaplex Token Metadata

Table of Contents
1 Executive Summary 3

Introduction 42
Summary of Findings . 4

3 Scope 5

Project Overview 6
Functionality . 6
On-Chain Data and Accounts . 6
Instructions . 7

4

Authority Structure . 10

Findings 15
[ND-MPL-HI-01] Anyone can close a master edition . 16
[ND-MPL-LO-01] No type check on creation of Metadata for a mint 17
[ND-MPL-IN-01] User can create FungibleAssets with decimals ≠ 0 18
[ND-MPL-IN-02] Creator verification conflicts with is_mutable 19
[ND-MPL-IN-03] User can create Master Edition for fungible asset 20
[ND-MPL-IN-04] User can create a Print delegate for fungibles 21

5

[ND-MPL-IN-05] Fee for NFT creation is not configurable . 22

Appendices

A About Neodyme 23

Methodology 24B
Select Common Vulnerabilities . 24

C Vulnerability Severity Rating 26

2 / 27

Security Audit - Metaplex Token Metadata

1 Executive Summary
Neodyme audited Metaplex’s on-chain Token Metadata program from March 2025 until July 2025.
The audit was part of the Solana Foundation efforts to make the Token Metadata program immutable
due to its crucial role in the Solana NFT ecosystem. Three auditing companies from the Solana
ecosystem were chosen (Sec3, OtterSec and Neodyme) to audit the program, where we were doing
the last pass.

Due to the threat model for Metaplex, the scope of this audit included the security of the implemen-
tation, evaluating the risks and benefits of making the program immutable and potential effects to
the Solana NFT ecosystem. According to Neodymes Rating Classification, 2 security relevant and
5 informational were found. The number of findings identified throughout the audit, grouped by
severity, can be seen in Figure 1.

Critical 0

High 1

Medium 0

Low 1Se
ve

rit
y

Informational 5

Figure 1: Overview of Findings

The auditors reported all findings to the Metaplex developers, who addressed them promptly. The
security fixes were verified for completeness by Neodyme. In addition to these findings, Neodyme
delivered the Metaplex team a list of nit-picks and additional notes that are not part of this report.

3 / 27

Security Audit - Metaplex Token Metadata

2 Introduction
From March 2025 until July 2025, Metaplex engaged Neodyme to do a detailed security analysis of their
Metaplex Token Metadata. Two senior security researchers from Neodyme conducted independent
full audits of the contract between the 25th of March 2025 and the 1st of July 2025. Both auditors
have a long track record of finding critical and other vulnerabilities in Solana programs, as well as in
Solana’s core code itself.

The audit focused on the contract’s technical security and an evaluation of the consequences of
immutability. In the following sections, we present our findings and discuss worst-case scenarios for
authority compromise and provide some general notes for considerations that may be useful in the
future.

Summary of Findings

All found issues were quickly remediated. In total, the audit revealed:

0 critical 1 high-severity 0 medium-severity 1 low-severity 5 informational

issues. We further discuss all authorities in Section 4.4.

4 / 27

https://neodyme.io

Security Audit - Metaplex Token Metadata

3 Scope
The contract audit’s scope comprised three major components:

• Primarily, the Implementation security of the contract’s source code
• Additionally, security of the overall design
• Additionally, resilience against economic attacks

Neodyme considers the source code, located at https://github.com/metaplex-foundation/security-
mpl-token-metadata, in scope for this audit. Third-party dependencies are not in scope.

During the audit, minor changes and fixes were made by Metaplex, which the auditors also reviewed
in-depth.

Relevant source code revisions are:

• e55497a3122abda1b59a806f44ccaa1dbeaa8e41 · Start of the audit
• 4284d5d1608da887a79d64e3765efb2809ab87da · Last reviewed revision

5 / 27

https://github.com/metaplex-foundation/security-mpl-token-metadata
https://github.com/metaplex-foundation/security-mpl-token-metadata

Security Audit - Metaplex Token Metadata

4 Project Overview
This section briefly outlines Metaplex Token Metadata’s functionality, design, and architecture,
followed by a detailed discussion of all related authorities.

Functionality

Metaplex’s Token Metadata program is the de facto standard for adding Metadata to SPL Mints. It offers
six different token standards that can be assigned to a mint:

• Fungible: A token mint without any restrictions
• FungibleAsset: A token mint, that has zero decimals
• NonFungible: A token mint, that has zero decimals and a supply of exactly one. The mint

authority has to be owned by Metaplex.
• ProgrammableNonFungible: Same as NonFungible, but all token transfers of this token have to

be through Metaplex, which can enforce further rules
• NonFungibleEdition: A token mint, with a supply of one and decimals of zero, that is “printed”

as an edition of a NonFungible.
• ProgrammableNonFungibleEdition: A token mint, with a supply of one and decimals of zero, that

is “printed” as an edition of a ProgrammableNonFungible.

Additionally, Metaplex has a broad feature set to improve the user experience of dealing with token
metadata and NFTs. Those include

• Updating the Metadata
• Transferring assets as well as preventing the transfer of assets through unwanted channels using

programmable assets
• Burning assets
• Printing editions of master editions
• Adding mints to collections and verifying their membership
• Adding verified creators to prove the validity of a NFT
• Delegating fine-grained authorities for different tasks (for the metadata itself as well as for token

accounts)
• Locking assets
• Creating Escrow accounts, such that NFTs can be enabled to hold assets for themselves

On-Chain Data and Accounts

Metaplex uses several different accounts to store its on-chain information. Most importantly, the
Metadata account serves as the foundational record of Metadata for a token mint. If the token mint is
of type NonFungible or ProgrammableNonFungible, an additional MasterEditionV2 account is created.

6 / 27

Security Audit - Metaplex Token Metadata

If the token mint is of type NonFungibleEdition or ProgrammableNonFungibleEdition, an additional
EditionV1 account is created.

In the table below, all different account types are listed and explained briefly.

AccountType Summary

MetadataV1 PDA of [program_id, mint], stores metadata and token standard

MasterEditionV2 PDA of a [program_id, mint, EDITION], serves as type marker
and stores the printable supply

EditionV1 PDA of a [program_id, mint, EDITION], serves as type marker,
stores the parent MasterEdition

EditionMarker Stores which edition numbers have been printed for a
NonFungible

EditionMarkerV2 Stores which edition numbers have been printed for a
ProgrammableNonFungible

ReservationList Not used anymore

TokenRecord Stores delegate information and state for a Token account of a
programmable asset

UseAuthorityRecord PDA of [program_id, mint, USER, user], stores delegated uses
for user

CollectionAuthorityRecord Delegate record to set and verify collections

TokenOwnedEscrow Stores information about an escrow account for a NFT

MetadataDelegate Stores pubkey and permissions of a MetadataDelegate

HolderDelegateRecord Stores pubkey and permissions of a TokenDelegate

Instructions

The contract has a total of 44 instructions, which we briefly summarize here.

Instruction Permission Summary

Burn

BurnV1 Token-Owner Burns a specified amount of tokens
and closes Metadata and Edition
accounts

Close

CloseAccounts OwnerlessCloseAuthority Closes Metadata and Edition ac-
counts, if mint supply is zero

Collection

7 / 27

Security Audit - Metaplex Token Metadata

Instruction Permission Summary

ApproveCollectionAuthority Update Authority Creates
a CollectionAuthorityRecord for a
mint

RevokeCollectionAuthority Update Authority or
CollectionDelegate

Closes
a CollectionAuthorityRecord

SetAndVerifyCollection Update Authority or
CollectionDelegate

Adds a Metadata to a verified
Collection

SetAndVerifySized-

-CollectionItems

UpdateAuthority or
CollectionDelegate

Same as SetAndVerifyCollection
but for sized collections

SetCollectionSize UpdateAuthority or
CollectionDelegate

Sets the collection size

UnverifyCollection UpdateAuthority or
CollectionDelegate

Removes the verified flag from a
Metadata collection

UnverifySizedCollectionItem UpdateAuthority or
CollectionDelegate

Same as UnverifyCollection but
for sized collections

VerifyCollection UpdateAuthority or
CollectionDelegate

Sets a Metadata collection to veri-
fied

VerifySizedCollectionItem UpdateAuthority or
CollectionDelegate

Same as VerifyCollection but for
sized collections

Delegate

Delegate UpdateAuthority
or TokenOwner

Creates a MetadataDelegate,
HolderDelegate or TokenDelegate
record

Revoke UpdateAuthority
or TokenOwner

Closes a record created via
Delegate

Edition

ConvertMasterEditionV1ToV2 Permissionless Converts a MasterEditionV1 to a
MasterEditionV2

MintNewEditionFrom-

-MasterEditionViaToken

PrintDelegate or
TokenOwner

Prints an Edition from a
MasterEdition NFT

CreateMasterEdition UpdateAuthority Creates a MasterEdition account
for a mint with decimals of zero and
supply of one. Transfers the Mint
authority

Escrow

8 / 27

Security Audit - Metaplex Token Metadata

Instruction Permission Summary

CreateEscrowAccount Permissionless Creates an escrow account for a
NonFungible

CloseEscrowAccount EscrowAuthority Closes an escrow account

TransferOut EscrowAuthority Transfers tokens out of an SPL token
account that is owned by the escrow
account

Fee

CollectFees FeeAuthority Collects fees from a Metadata ac-
count

Freeze

FreezeDelegatedAccount TokenDelegate Freezes a SPL Token account

ThawDelegatedAccount TokenDelegate Thaws a SPL Token account

Metadata

Create MintAuthority Create a Metadata account
for a mint and optionally a
MasterEdition

CreateMetadataAccountsV3 MintAuthority Create a Metadata account for a
mint

Mint UpdateAuthority
or MintAuthority

Mints tokens to a token account,
NFTs can only have a supply of 1

Print PrintDelegate
or TokenOwner

Creates an edition mint form a
MasterEdition

PuffMetadata Permissionless Pads metadata name, symbol and
URI with null bytes

RemoveCreatorVerification Creator Removes the verified flag for a
metadata creator

SetTokenStandard UpdateAuthority Sets token standard according to
the mints decimals, supply and if an
edition is provided

SignMetadata Creator Sets the verified flag for a metadata
creator

Transfer TokenOwner
or TokenDelegate

Transfers tokens of a Metadata mint
while enforcing pNFT rules

Update UpdateAuthority
or MetadataDelegate

Updates metadata fields

UpdateMetadataAccountV2 UpdateAuthority Updates metadata fields

9 / 27

Security Audit - Metaplex Token Metadata

Instruction Permission Summary

UpdatePrimarySale-

-HappenedViaToken

TokenOwner Set the PrimarySaleHappend field
to true

Resize

Resize TokenOwner
or ResizeAuthority

Reduces the Metadata and Edition
account size

State

Lock TokenOwner
or TokenDelegate

Freezes account or sets its state to
Locked for pNFTs

Unlock TokenOwner
or TokenDelegate

Unfreezes account or sets its state to
Unlocked for pNFTs

Uses

ApproveUseAuthority TokenOwner Creates UseAuthorityRecord for a
user

RevokeUseAuthority TokenOwner Closes an UseAuthorityRecord

Utilize UseAuthority Decrements metadata.uses by a
specified number. Can burn a token,
if the uses reach zero

Verification

VerifyCollectionV1 UpgradeAuthority
or MetadataDelegate

Sets a metadata collection to veri-
fied

VerifyCreatorV1 Creator Sets the verified flag for a metadata
creator

UnverifyCollectionV1 UpgradeAuthority
or MetadataDelegate

Removes the verified flag for a
metadata collection

UnverifyCreatorV1 Creator Removes the verified flag for a
metadata creator

Authority Structure

The planned immutability of the Metaplex Token Metadata program raises the question of which non-
upgrade authorities remain in the current program, what powers they hold, and what the worst-case
impact on the NFT ecosystem would be if one of these authorities were to act maliciously.

10 / 27

Security Audit - Metaplex Token Metadata

SEED_AUTHORITY

The SEED_AUTHORITY (AqH29mZfQFgRpfwaPoTMWSKJ5kqauoc1FwVBRksZyQrt) can be found here in the
source code. This public key was the former upgrade authority of the Metaplex Token Metadata
program before it was transferred to the new upgrade council.

It is used in process_create_metadata_accounts_logic to bypass the restriction that only the mint
authority of a specific mint can create the corresponding metadata account:

1 assert_mint_authority_matches_mint(&existing_mint_authority,
mint_authority_info).or_else(

2 |e| {
3 // Allow seeding by the authority seed populator
4 if mint_authority_info.key == &SEED_AUTHORITY &&
5 mint_authority_info.is_signer {
6 // When metadata is seeded, the mint authority should be able to change it
7 if let COption::Some(auth) = existing_mint_authority {
8 update_authority_key = auth;
9 is_mutable = true;
10 }
11 Ok(())
12 } else {
13 Err(e)
14 }
15 },
16)?;

We assess the impact of this feature on the NFT ecosystem as non-critical, even if the authority were
compromised, as the original mint authority can still change the associated metadata.

Nevertheless, we recommend removing this authority from the immutable release, as there is no valid
reason to retain it.

As a result of this report, Metaplex decided to remove the SEED_AUTHORITY in commit
4284d5d1608da887a79d64e3765efb2809ab87da. Neodyme verified this.

FEE_AUTHORITY

The FEE_AUTHORITY (Levytx9LLPzAtDJJD7q813Zsm8zg9e1pb53mGxTKpD7) can be found here in the
source code.

It is used in process_collect_fees to collect metadata account creation fees. These fees are paid as
additional rent during account creation. The FEE_AUTHORITY collects this additional rent and reduces
the account’s lamports to the rent-exempt minimum. The fees are transferred to FEE_DESTINATION
(2fb1TjRrJQLy9BkYfBjcYgibV7LUsr9cf6QxvyRZyuXn).

11 / 27

https://github.com/metaplex-foundation/metaplex-program-library/blob/74f6e209ed7ff5203dccec2ef3329c3f8d55b5d9/token-metadata/program/src/utils/metadata.rs#L31
https://github.com/metaplex-foundation/mpl-token-metadata/blob/2878f777648deccd6230e45b6f081f5ed742dbef/programs/token-metadata/program/src/state/fee.rs#L4

Security Audit - Metaplex Token Metadata

Beyond this, the FEE_AUTHORITY has no additional powers. It will remain in the immutable program,
as it is part of the legal contract between Metaplex and the Solana Foundation.

OWNERLESS_CLOSE_AUTHORITY

The OWNERLESS_CLOSE_AUTHORITY (C1oseLQExhuEzeBhsVbLtseSpVgvpHDbBj3PTevBCEBh) can be found
here in the source code.

It is used in process_close_accounts to close metadata accounts:
• where the mint has been closed, or
• where the mint supply is zero, and no mint authority is set, or
• where the mint supply is zero, and the NFT is an edition (Metaplex will also close the correlated

edition account).

These cases typically apply to burned NFTs. The rent from these accounts is transferred to
OWNERLESS_CLOSE_DESTINATION (GxCXYtrnaU6JXeAza8Ugn4EE6QiFinpfn8t3Lo4UkBDX).

Beyond this, the OWNERLESS_CLOSE_AUTHORITY has no additional powers.

RESIZE_AUTHORITY

The RESIZE_AUTHORITY (ResizebfwTEZTLbHbctTByvXYECKTJQXnMWG8g9XLix) can be found here in the
source code .

It is used in the process_resize instruction. The resize feature, activated on October 10, reduces the
account size of metadata accounts by removing unused account space.

The size reduction can be triggered:
• by the owner of the NFT, transferring the excess rent lamports to themselves, or
• by the RESIZE_AUTHORITY, transferring the excess rent lamports to RESIZE_DESTINATION.

According to the feature announcement, the RESIZE_AUTHORITY will not be used until April 25, 2025.
Until then, users can claim the rent themselves. However, this date is not enforced in the code,
meaning the RESIZE_AUTHORITY could claim the rent prematurely.

BUBBLEGUM PDAs

The Bubblegum program introduced compressed NFTs to Solana. To ensure compatibility, the Token
Metadata Program includes specific capabilities for Bubblegum.

In process_create_metadata_accounts_logic, Bubblegum can set the
allow_direct_creator_writes and allow_direct_collection_verified_writes flags:

1 // This allows the Bubblegum program to create metadata with verified creators
since they were

2 // verified already by the Bubblegum program.
3 let is_decompression = is_decompression(mint_info, mint_authority_info);

12 / 27

https://github.com/metaplex-foundation/mpl-token-metadata/blob/2878f777648deccd6230e45b6f081f5ed742dbef/programs/token-metadata/program/src/state/fee.rs#L7
https://github.com/metaplex-foundation/mpl-token-metadata/blob/2878f777648deccd6230e45b6f081f5ed742dbef/programs/token-metadata/program/src/state/fee.rs#L10
https://developers.metaplex.com/token-metadata/guides/account-size-reduction

Security Audit - Metaplex Token Metadata

4 let allow_direct_creator_writes = allow_direct_creator_writes ||
is_decompression;

5 ...
6 let allow_direct_collection_verified_writes = is_edition || is_decompression;

The is_decompression function checks that the mint_authority is the corresponding PDA of the
Bubblegum Program for the specific mint pubkey and that this PDA has signed the instruction.

Verified Creators Feature

The allow_direct_creator_writes flag enables Bubblegum to skip the checks for the Verified
Creators feature.

Typically, when creating an NFT, users specify a list of public keys involved in its creation. These
public keys are all marked as unverified. Using verify_creator_v1, a user can sign and verify their
involvement in the creation of the NFT.

Bubblegum bypasses this process because it has already verified the creators in the Bubblegum
program.

Verified Collections Feature

The allow_direct_collection_verified_writes flag allows the Bubblegum program to skip the
checks for the Verified Collections feature.

Normally, an NFT creator specifies the collection field in the metadata. This assignment is considered
unverified until the collection authority confirms it using verify_collection.

Bubblegum bypasses this step because it has already verified the collection association.

Compromise of the Bubblegum program

The Bubblegum program is currently deployed as an upgradable contract
at address BGUMAp9Gq7iTEuizy4pqaxsTyUCBK68MDfK752saRPUY with upgrade authority
GUMAqc14ZC6z4fEmPrHWHc8HJg3KJdtB6JBjfXcLSyB.

If the Bubblegum program is compromised, it could critically impact the Solana NFT ecosystem.
An attacker could create NFTs that falsely appear to belong to collections like MadLads, seemingly
verified by their creators, with no distinguishable on-chain evidence.

As a result of this report, Metaplex decided to move the Bubblegum upgrade authority to a multisig
deployed at bfQVv6niKVgEURYqQ1beJmiEQQN7MrvLRvk3mZGFubb.

BUBBLEGUM_SIGNER

The BUBBLEGUM_SIGNER (4ewWZC5gT6TGpm5LZNDs9wVonfUT2q5PP5sc9kVbwMAK) can be found here in the
source code.

13 / 27

https://developers.metaplex.com/token-metadata/creators
https://developers.metaplex.com/token-metadata/creators
https://developers.metaplex.com/token-metadata/collections
https://github.com/metaplex-foundation/mpl-token-metadata/blob/887708157d86addf0cfd87c15de19ef1eb984a87/programs/token-metadata/program/src/utils/compression.rs#L7

Security Audit - Metaplex Token Metadata

It is used in the bubblegum_set_collection_size instruction to update the size (i.e., the number of
associated members) of an NFT collection. This feature has been deprecated because there is no
reliable way to track collection size due to NFT burns. There is also no reference to this instruction
in the

As such, the veracity of a collection size must be questioned, and a compromise of this authority would
not cause significant disruptions to the Solana NFT ecosystem.

Token Auth Rule Program

Programmable NFTs (pNFTs) are a special token type introduced by the Metaplex Token Metadata
Program. They enable NFT creators to implement more fine-grained access controls and restrictions
on NFTs. This is achieved by setting the freeze authority of an SPL token account to Metaplex, thereby
restricting access to the underlying SPL Token Program by freezing the accounts. As a result, Metaplex
is enforced as a proxy for operations concerning the NFT.

pNFT-specific rules are enforced during two types of operations:

• Delegate: Approves a new delegate for a specific operation (e.g., allowing the delegate to burn
the NFT).

• Transfer: Permits the transfer of the underlying token only if the rules are met (e.g., requiring a
second signer specified in the rule set).

The creation, updating, and enforcement of these rules do not occur within the Metaplex Token Meta-
data Program itself. Instead, they are managed by a separate program called Token Auth Rules. This
program is deployed as an upgradable contract at auth9SigNpDKz4sJJ1DfCTuZrZNSAgh9sFD3rboVmgg,
and the upgrade authority was held by 5jAhh15D6HDZbyysHFvJ1PAXgYcgsahkNW3yN5Q6EZCw.

As a result of this report, Metaplex decided to move the Token Auth upgrade authority to a multisig
deployed at bfQVv6niKVgEURYqQ1beJmiEQQN7MrvLRvk3mZGFubb.

Potential Consequences of a Compromised Token Auth Rules Program

A compromise of the Token Auth Rules Program would have several critical consequences:

• Rule Enforcement Failure: All rules created for a pNFT would become unenforceable, rendering
features such as creator royalties ineffective.

• DoS: The Token Auth Rules Program could fail all CPI invocations, making it impossible to
transfer any pNFT or set any delegate.

• Security Exploitation: During the validation of a Transfer operation, the signing token authority
is passed to the Token Auth Rules Program without revoking the signer’s privilege. An attacker
could exploit this to drain all SOL funds from the token holder.

14 / 27

https://developers.metaplex.com/token-auth-rules

Security Audit - Metaplex Token Metadata

5 Findings
This section outlines all of our findings. They are classified into one of five severity levels, detailed in
Appendix C. In addition to these findings, Neodyme delivered the Metaplex team a list of nit-picks and
additional notes, which are not part of this report.

All findings are listed in Table 2 and further described in the following sections.

Identifier Name Severity Status

ND-MPL-
HI-01

Anyone can close a master edition HIGH Resolved

ND-MPL-
LO-01

No type check on creation of Metadata for
a mint

LOW Resolved

ND-MPL-
IN-01

User can create FungibleAssets with
decimals ≠ 0

INFORMATIONAL Resolved

ND-MPL-
IN-02

Creator verification conflicts with
is_mutable

INFORMATIONAL Acknowledged

ND-MPL-
IN-03

User can create Master Edition for fungible
asset

INFORMATIONAL Acknowledged

ND-MPL-
IN-04

User can create a Print delegate for
fungibles

INFORMATIONAL Resolved

ND-MPL-
IN-05

Fee for NFT creation is not configurable INFORMATIONAL Acknowledged

Table 2: Findings

15 / 27

Security Audit - Metaplex Token Metadata

[ND-MPL-HI-01] Anyone can close a master edition

Severity Impact Affected Component Status

HIGH Loss of rent, ecosystem disruption Burn functionality Resolved

Metaplex uses an account at the PDA [program_id, mint, EDITION] of type MasterEditionV2 to
indicate that the metadata linked to the mint represents an NFT and serves as its master edition.

With the BurnV1 instruction, an NFT owner can burn their token and close the associated Metadata
and MasterEditionV2 accounts.

While the Metadata account was properly validated for the mint, there was no verification that the
provided master edition account matched the correct PDA, since metadata.edition_nonce is set by
default:

1
🔗 burn/nonfungible.rs, lines 44-55// Has a valid Master Edition or Print Edition.

2 let edition_info_path = Vec::from([
3 PREFIX.as_bytes(),
4 crate::ID.as_ref(),
5 ctx.accounts.mint_info.key.as_ref(),
6 EDITION.as_bytes(),
7]);
8
9 let bump = match args.metadata.edition_nonce {
10 Some(bump) => Ok(bump), //<- NO CHECK
11 None => assert_derivation(&crate::ID, edition_info, &edition_info_path),
12 }?;

This allowed an attacker to close the master edition accounts of NFTs they did not control. This results
in the loss of rent funds stored in those edition accounts and poses a significant disruption risk to the
NFT ecosystem. However, the attacker could not profit, as creating a malicious master edition also
required paying rent.

The issue could be mitigated by the original NFT owner recreating the master edition using
CreateMasterEditionV3, although he would have to pay the rent again.

Resolution

The Metaplex team responded quickly, confirmed the bug, and published a fix in commit
5bf34e68ad6491727dd598d0ad41b93a65ad79f1. Neodyme and other auditors verified the resolution.

16 / 27

https://github.com/metaplex-foundation/mpl-token-metadata/blob/e86de64101fc386dd4cc97b6f107da3de258833a/programs/token-metadata/program/src/processor/burn/nonfungible.rs#L44-L55
https://github.com/metaplex-foundation/mpl-token-metadata/blob/e86de64101fc386dd4cc97b6f107da3de258833a/programs/token-metadata/program/src/processor/burn/nonfungible.rs#L44-L55
https://github.com/metaplex-foundation/mpl-token-metadata/blob/e86de64101fc386dd4cc97b6f107da3de258833a/programs/token-metadata/program/src/processor/burn/nonfungible.rs#L44-L55

Security Audit - Metaplex Token Metadata

[ND-MPL-LO-01] No type check on creation of Metadata for a mint

Severity Impact Affected Component Status

LOW Inconsistent state Metadata creation Resolved

When creating a Metadata account for a mint using CreateMetadataAccountsV3, there is no check to
ensure that the provided mint_info is actually of type Mint. The function only verifies that mint_info
is owned by the SPL program and that mint_info.mint_authority is a signer. Potential type confusion
targets include the Account and Metadata structures, which are also SPL-owned.

Figure 2: Struct layouts

As shown in Figure 2, the mint_authority field layout does not match those of the other types. An
attacker would need to brute-force at least 28 bytes of a keypair to impersonate the mint_authority
for an Account or Multisig, which is currently infeasible.

Only the SEED_AUTHORITY can bypass the signer check for mint_authority, making this issue
exploitable solely by the Metaplex team.

Resolution

Metaplex resolved the issue by removing the SEED_AUTHORITY in commit
4284d5d1608da887a79d64e3765efb2809ab87da. Neodyme verified the fix.

17 / 27

Security Audit - Metaplex Token Metadata

[ND-MPL-IN-01] User can create FungibleAssets with decimals ≠ 0

Severity Impact Affected Component Status

INFORMATIONAL Inconsistent Token Standard Token Standard Resolved

In UpdateV2, the update authority of a metadata account can specify a new desired token standard.

1
🔗 metadata/update.rs, lines 333-345fn check_desired_token_standard(

2 existing_or_inferred_token_std: TokenStandard,
3 desired_token_standard: TokenStandard,
4) -> ProgramResult {
5 match (existing_or_inferred_token_std, desired_token_standard) {
6 (
7 TokenStandard::Fungible | TokenStandard::FungibleAsset,
8 TokenStandard::Fungible | TokenStandard::FungibleAsset,
9) => Ok(()),
10 (existing, desired) if existing == desired => Ok(()),
11 _ => Err(MetadataError::InvalidTokenStandard.into()),
12 }
13 }

A change is only allowed between Fungible and FungibleAsset, and vice versa. However, there is no
check ensuring that the mint’s decimals are zero when switching to FungibleAsset, which violates
its specification.

Resolution

Metaplex fixed the issue in commit 4284d5d1608da887a79d64e3765efb2809ab87da. Neodyme verified
the fix.

18 / 27

https://github.com/metaplex-foundation/mpl-token-metadata/blob/609afd2047e96e2c7cacdcef98ee0859a18ec613/programs/token-metadata/program/src/processor/metadata/update.rs#L333-L345
https://github.com/metaplex-foundation/mpl-token-metadata/blob/609afd2047e96e2c7cacdcef98ee0859a18ec613/programs/token-metadata/program/src/processor/metadata/update.rs#L333-L345
https://github.com/metaplex-foundation/mpl-token-metadata/blob/609afd2047e96e2c7cacdcef98ee0859a18ec613/programs/token-metadata/program/src/processor/metadata/update.rs#L333-L345

Security Audit - Metaplex Token Metadata

[ND-MPL-IN-02] Creator verification conflicts with is_mutable

Severity Impact Affected Component Status

INFORMATIONAL - Creator verification Acknowledged

Metaplex allows a Metadata creator to mark the metadata as immutable, ensuring that fields like
name, URI, and other data remain unchanged. This data resides in the metadata.data field. Once
is_mutable is set to false, it should no longer be modified:

1 pub struct Metadata {
2 ...
3 /// Asset data.
4 pub data: Data,
5 // Whether or not the data struct is mutable, default is not
6 pub is_mutable: bool,
7 ...
8 }

The Data struct also stores the creators of the metadata and whether they are verified (i.e., they signed
a statement confirming they created the NFT).

Verification and unverification are handled via SignMetadata, RemoveCreatorVerification,
VerifyCreatorV1, and UnverifyCreatorV1. These functions do not check the is_mutable flag and can
modify the Data struct even when the metadata is marked as immutable.

Since this appears to be intentional, we recommend updating the documentation to clarify this
behavior.

Resolution

Metaplex acknowledged the finding and expanded its documentation on this.

19 / 27

Security Audit - Metaplex Token Metadata

[ND-MPL-IN-03] User can create Master Edition for fungible asset

Severity Impact Affected Component Status

INFORMATIONAL - Master Editions Acknowledged

In CreateMasterEditionV3, there is no check to ensure that metadata.token_standard is set to
NonFungible. The function only verifies that mint.decimals is zero and the supply is one.

As a result, a Metadata with token standard FungibleAsset can still have an associated
MasterEditionV2 account.

While we found no exploitable impact from this inconsistency, we recommend adding the check for
correctness and clarity.

Resolution

Metaplex acknowledged the issue as acceptable and intended behaviour.

20 / 27

Security Audit - Metaplex Token Metadata

[ND-MPL-IN-04] User can create a Print delegate for fungibles

Severity Impact Affected Component Status

INFORMATIONAL - Delegation Resolved

Metaplex supports creating delegates for various metadata-related functions.

One such role is Print, which allows the current NFT holder to delegate the ability to print editions of
a master edition to another account.

However, Metaplex does not verify that the metadata in Delegate corresponds to a master edition
NFT. As a result, print delegates can be created for tokens with the Fungible or FungibleAsset token
standards.

Attempts to use the Print instruction on such tokens will fail due to a proper check ensuring only
master editions can be printed. Thus, we see no exploitable vector but recommend addressing the
inconsistency.

Resolution

Metaplex mitigated the issue in commit 4284d5d1608da887a79d64e3765efb2809ab87da. Neodyme
verified the fix.

21 / 27

Security Audit - Metaplex Token Metadata

[ND-MPL-IN-05] Fee for NFT creation is not configurable

Severity Impact Affected Component Status

INFORMATIONAL Cost of minting NFTs might make
the creation of new non-compressed
NFTs infeasible in the future

NFT creation Acknowledged

Metaplex levies a 0.01 SOL for the creation of NFTs. This amount is hard-coded in the contract, which
means no one will be able to change it once the contract is read-only. As this fee is ultimately arbitrary
and doesn’t serve a protective purpose similar to rent, an increase in the price of SOL might make it
economically infeasible to mint new NFTs in the future using Token Metadata with no clear upside.

Resolution

Metaplex acknowledged the issue as acceptable and intended behaviour.

22 / 27

Security Audit - Metaplex Token Metadata

A About Neodyme
Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully under-
stand every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competi-
tions, called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption,
reverse engineering complicated algorithms, and much more. Through the years, many of our team
members have won national and international hacking competitions, and keep ranking highly among
some of the hardest CTF events worldwide. In 2020, some of our members started experimenting
with validators and became active members in the early Solana community. With the prospect of an
interesting technical challenge and bug bounties, they quickly encouraged others from our CTF team
to look for security issues in Solana. The result was so successful that after reporting several bugs, in
2021, the Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

23 / 27

Security Audit - Metaplex Token Metadata

B Methodology
We are not checklist auditors.

In fact, we pride ourselves on that. We adapt our approach to each audit, investing considerable time
into understanding the program upfront and exploring its expected behavior, edge cases, invariants,
and ways in which the latter could be violated.

We use our uniquely deep knowledge of Solana internals, and our years-long experience in auditing
Solana programs to find bugs that others miss. We often extend our audit to cover off-chain compo-
nents in order to see how users could be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list here.

Select Common Vulnerabilities

Our most common findings are still specific to Solana itself. Among these are vulnerabilities such as
the ones listed below:

• Insufficient validation, such as:
‣ Missing ownership checks
‣ Missing signer checks
‣ Signed invocation of unverified programs
‣ Account confusions
‣ Missing freeze authority checks
‣ Insufficient SPL account verification
‣ Dangerous user-controlled bumps
‣ Insufficient Anchor account linkage

• Account reinitialization vulnerabilities
• Account creation DoS
• Redeployment with cross-instance confusion
• Missing rent exemption assertion
• Casting truncation
• Arithmetic over- or underflows
• Numerical precision and rounding errors
• Anchor pitfalls, such as accounts not being reloaded
• Non-unique seeds
• Issues arising from CPI recursion
• Log truncation vulnerabilities
• Vulnerabilities specific to integration of Token Extensions, for example unexpected external

token hook calls

24 / 27

Security Audit - Metaplex Token Metadata

Apart from such Solana-specific findings, some of the most common vulnerabilities relate to the
general logical structure of the contract. Specifically, such findings may be:

• Errors in business logic
• Mismatches between contract logic and project specifications
• General denial-of-service attacks
• Sybil attacks
• Incorrect usage of on-chain randomness
• Contract-specific low-level vulnerabilities, such as incorrect account memory management
• Vulnerability to economic attacks
• Allowing front-running or sandwiching attacks

Miscellaneous other findings are also routinely checked for, among them:
• Unsafe design decisions that might lead to vulnerabilities being introduced in the future

‣ Additionally, any findings related to code consistency and cleanliness
• Rug pull mechanisms or hidden backdoors

Often, we also examine the authority structure of a contract, investigating their security as well as the
impact on contract operations should they be compromised.

Over the years, we have found hundreds of high and critical severity findings, many of which are highly
nontrivial and do not fall into the strict categories above. This is why our approach has always gone
way beyond simply checking for common vulnerabilities. We believe that the only way to truly secure
a program is a deep and tailored exploration that covers all aspects of a program, from small low-level
bugs to complex logical vulnerabilities.

25 / 27

Security Audit - Metaplex Token Metadata

C Vulnerability Severity Rating
We use the following guideline to classify the severity of vulnerabilities. Note that we assess each
vulnerability on an individual basis and may deviate from these guidelines in cases where it is well-
founded. In such cases, we always provide an explanation.

Severity Description

CRITICAL Vulnerabilities that will likely cause loss of funds. An attacker can trigger them
with little or no preparation, or they are expected to happen accidentally.
Effects are difficult to undo after they are detected.

HIGH Bugs that can be used to set up loss of funds in a more limited capacity, or to
render the contract unusable.

MEDIUM Bugs that do not cause direct loss of funds but that may lead to other
exploitable mechanisms, or that could be exploited to render the contract
partially unusable.

LOW Bugs that do not have a significant immediate impact and could be fixed easily
after detection.

INFORMATIONAL Bugs or inconsistencies that have little to no security impact, but are still
noteworthy.

Additionally, we often provide the client with a list of nit-picks, i.e. findings whose severity lies below
Informational. In general, these findings are not part of the report.

26 / 27

Security Audit - Metaplex Token Metadata

Neodyme AG

Dirnismaning 55
Halle 13
85748 Garching
Germany

E-Mail: contact@neodyme.io

https://neodyme.io

27 / 27

mailto:contact@neodyme.io
https://neodyme.io

	Executive Summary
	Introduction
	Summary of Findings

	Scope
	Project Overview
	Functionality
	On-Chain Data and Accounts
	Instructions
	Authority Structure
	SEED_AUTHORITY
	FEE_AUTHORITY
	OWNERLESS_CLOSE_AUTHORITY
	RESIZE_AUTHORITY
	BUBBLEGUM PDAs
	Verified Creators Feature
	Verified Collections Feature
	Compromise of the Bubblegum program

	BUBBLEGUM_SIGNER
	Token Auth Rule Program
	Potential Consequences of a Compromised Token Auth Rules Program

	Findings
	[ND-MPL-HI-01] Anyone can close a master edition
	Resolution

	[ND-MPL-LO-01] No type check on creation of Metadata for a mint
	Resolution

	[ND-MPL-IN-01] User can create FungibleAssets with decimals ≠ 0
	Resolution

	[ND-MPL-IN-02] Creator verification conflicts with is_mutable
	Resolution

	[ND-MPL-IN-03] User can create Master Edition for fungible asset
	Resolution

	[ND-MPL-IN-04] User can create a Print delegate for fungibles
	Resolution

	[ND-MPL-IN-05] Fee for NFT creation is not configurable
	Resolution

	About Neodyme
	Methodology
	Select Common Vulnerabilities

	Vulnerability Severity Rating

