Security Audit - Marinade Validator
Bonds

conducted by Neodyme AG

Lead Auditor: Nico Griindel

Second Auditor: Simon Klier

April 09" 2024

Security Audit - Marinade Validator Bonds

Table of Contents

1 Introduction 3
Summaryof Findings e 3
2 Scope 4

3 Project Overview
Functionality o . e e e e e
On-Chain Accounts and Authorities e

Instructions L. e e e e e e e e 10
4 Findings 12
ND-MND3-H1 [High; Resolved] Settlements Can Be Claimed To Locked Stake Accounts . . . 13
ND-MND3-L1 [Low; Resolved] No Safeguards for Compromised Operator Hot Wallet 14
ND-MND3-11 [Info; Resolved] UnreliableEvents 15
ND-MND3-12 [Info; Resolved] Vote Account Version IsNot Checked 16
Appendices
A About Neodyme 17
B Methodology 18
C Vulnerability Severity Rating 19

2/20

Security Audit - Marinade Validator Bonds

Introduction

Neodyme audited Marinades on-chain Validator Bond program during March and April of 2024. The
scope of this audit was focused on technical security, with further considerations about operational se-
curity. The auditors found that Marinade’s Validator Bond program comprised a clean design and above-
standard code quality, relying on the industry-standard Anchor framework. According to Neodymes
Rating Classification, no critical, one high, and one low-severity issue was found. The number of
findings identified throughout the audit, grouped by severity, can be seen in Figure 1.

Critical | O
b5 Medium | 0
>
()
Informational 2

Number of Findings

Figure 1: Overview of Findings

All findings were reported to the Marinade developers and addressed promptly. The security fixes were
verified for completeness by Neodyme. In addition to these findings, Neodyme delivered the Marinade
team a list of nit-picks and additional notes that are not part of this report.

Summary of Findings

During the audit, two security-relevant and two informational findings were identified. Marinade
remediated all of those findings.

In total, the audit revealed:
0 critical « 1 high-severity « 0 medium-severity « 1 low-severity » 2 informational

issues.

The high-severity finding addresses a vulnerability, where anyone could withdraw settlement receivers
claims to locked stake accounts, making those funds inaccessible and opening up the possibility of
extortion. All findings are detailed in section Findings.

3/20

Security Audit - Marinade Validator Bonds

Scope

The contract audit’s scope is focused on the Implementation security of the contract’s source code.

Neodyme considers the source code, located at https://github.com/marinade-finance/validator-bonds,
in scope for this audit. Third-party dependencies are not in scope.

The relevant source code revisions are:

« afbdad4742dd21678aa0ee7052793b59e30eb597 « Start of the audit
« 7e6d35e8337174bfe6fcf2691914ac65427f6095 « Last reviewed revision

4/20

https://github.com/marinade-finance/validator-bonds

Security Audit - Marinade Validator Bonds

Project Overview

This section briefly outlines Marinade’s Validator Bonds functionality, design, and architecture, followed
by a detailed discussion of all related authorities.

Functionality

Marinade’s Validator Bond program allows for Validators to put up stake accounts as a bond. A global
operator authority can create settlements against that bond, which is planned to be done in response
to so-called protected events (slashing or underperformance of the Validator), which stakers can then

claim.

5/20

Security Audit - Marinade Validator Bonds

On-Chain Accounts and Authorities

The root of the Validator Bond programs account structure are the Conf1ig accounts. The creation of
these is not permissioned, and they can be created at any address (requiring a signature, of course). A
Config holds the following values:

/// Root account that configures the validator bonds program
account
derive(Debug

pub struct Config {
/// Admin authority that can update the config
pub admin_authority: Pubkey,
/// Operator authority (bot hot wallet)
pub operator_authority: Pubkey,
/// How many epochs permitting to claim the settlement
pub epochs_to_claim_settlement: u64,
/// How many epochs before withdraw is allowed
pub withdraw_lockup_epochs: u64,
/// Minimum amount of lamports to be considered for a stake account
- operations (e.g., split)
pub minimum_stake_lamports: u64,
/// PDA bonds stake accounts authority bump seed
pub bonds_withdrawer_authority_bump: u8,
/// Authority that can pause the program in case of emergency
pub pause_authority: Pubkey,
// Defines if the program is paused
pub paused: bool,
/// reserved space for future changes
pub reserved: [u8; 479],

The admin author-ity isable to update the config, while the operator author-ityisableto
create settlements. The pause authority isable to pause and resume the contract.

Validators can create Bond accounts. The address of a Bond account is derived from the Conf1i g key
that will manage this bond and the vote account of the validator.

/// Bond account for a validator vote address
account
derive (Debug

pub struct Bond {

6/20

Security Audit - Marinade Validator Bonds

/17

—

Program root config address. Validator bond is created for this
config as PDA

// saving the address here for easier access with getProgramAccounts

pub
///
///
///
///

pub
///

—

/17

call

config: Pubkey,

Validator vote address that this bond account is crated for
INVARIANTS:

- one bond account per validator vote address

- this program does NOT change stake account delegation
voter_pubkey to any other validator vote account
vote_account: Pubkey,
Authority that may close the bond or withdraw stake accounts
associated with the bond

The same powers has got the owner of the validator vote account

// https://github.com/solana-

pub
///
pub
/17
pub

///
pub

labs/solana/blob/master/vote/src/vote_account.rs
authority: Pubkey,

Cost per mille per epoch

cpmpe: u64,

PDA Bond address bump seed

bump: u8,

reserve space for future extensions

reserved: [u8; 142],

Both the bond author-ity and the vote account of the validator can create withdraw requests for

the bond:

/// Request from a validator to withdraw the bond
#[account|

#[derive(Debug) |

pub struct WithdrawRequest {

/17
pub

/17

pub
/17

—

pub

Validator vote account that requested the withdrawal
vote_account: Pubkey,

Bond account that the withdraw request is for (has to match with
vote_account)

bond: Pubkey,

Epoch when the withdrawal was requested, i.e., when this "ticket"
is created

epoch: ué64,

/// Amount of lamports to withdraw

7/20

Security Audit - Marinade Validator Bonds

pub requested_amount: u64,

/// Amount of lamports withdrawn so far
pub withdrawn_amount: u64,

/// PDA account bump

pub bump: u8,

/// reserve space for future extensions
pub reserved: [u8; 93],

These are only claimable after a certain amount of time, as configured in the Config account. Only a
single WithdrawRequest can exist for each Bond at one time. Both the vote account and the bond
author-ity can cancel the withdraw request again.

The operator authority can create settlements against bond accounts:

/// Settlement account for a particular config and merkle root
/// Settlement defines that a protected event happened and it will be
— settled
#[account|
#[derive(Debug) |
pub struct Settlement {
/// the settlement belongs under this bond, i.e., under a particular
— validator vote account
pub bond: Pubkey,
/// settlement authority used as the 'staker' stake account authority
/// of stake accounts funded to this settlement
pub staker_authority: Pubkey,
/// 256-bit merkle root to check the claims against
pub merkle_root: [u8; 32],
/// maximum number of funds that can ever be claimed
pub max_total_claim: u64,
/// maximum number of merkle tree nodes that can ever be claimed
pub max_merkle_nodes: u64,
/// total lamports funded
pub lamports_funded: u64,
/// total lamports that have been claimed
pub lamports_claimed: u64,
/// number of nodes that have been claimed
pub merkle_nodes_claimed: u64,
/// what epoch the Settlement has been created for
pub epoch_created_for: u64,
/// address that collects the rent exempt from the Settlement account
— when closed

8/20

Security Audit - Marinade Validator Bonds

pub rent_collector: Pubkey,

/// address that collects rent exempt for "split stake account"”
— possibly created on funding settlement

pub split_rent_collector: Option<Pubkey>,

/// amount of lamports that are collected for rent exempt for "split
- stake account”

pub split_rent_amount: u64,

/// PDA bumps

pub bumps: Bumps,

/// reserve space for future extensions

pub reserved: [u8; 99],

A merkle tree is used to store all claims. Claims are only able to be claimed for a certain amount of
epochs, and funds associated with a settlement are no longer available for withdrawal. In order to
ensure that no claim is claimed twice, an account is created once each claim is executed.

9/20

Security Audit - Marinade Validator Bonds

Instructions

The contract has a total of 20 instructions, which we briefly summarize here.

Instruction

InitConfig
ConfigureConfig

EmergencyPause

EmergencyResume

InitBond

FundBond

ConfigureBond

MintBond

ConfigureBondWithMint

InitWithdrawRequest

CancelWithdrawRequest

ClaimWithdrawRequest

InitSettlement

FundSettlement

CloseSettlement

ClaimSettlement

Category

Permissionless
Admin only

Pause authority
only

Pause authority
only

Permissionless

Permissionless

Bond authority
only

Bond authority
only

Config token
holder only

Bond authority
only

Bond authority
only

Bond authority
only

Operator only

Operator only

Permissionless

Permissionless

Summary

Initializes a Conf1igaccount
Changes the configuration ona Config

Pauses all relevant functions of the program

Resumes all relevant functions of the program

Initializes a Bond account.

Funds a stake account to a validators Bond by
changing the withdraw and staking authorities

Changes the config of a Bond

Mints a special SPL token to the vote account,
that can be used to change the Bond config

Burns a config token that was previously minted
using MintBond and changes the Bond config

InitializesaWithdraw Request

CancelsaWithdraw Request

ClaimsaWithdraw Request

Initializes a Settlement

Funds a stake account that is managed by the
corresponding Bond to the Settlement

Closes a Settlement, only possible after it
expired and no more claims can be claimed

Executes a claim against a Settlement, by
withdrawing the stake into a stake account
owned by the claimant

10/20

Security Audit - Marinade Validator Bonds

Instruction

CloseSettlementClaim

MergeStake

ResetStake

WithdrawStake

Category

Permissionless

Permissionless

Permissionless

Operator only

Summary

Closes a SettlementClaimaccount, after
the Settlement it belongs to is expired, in
order to claw back the rent

Merges two stake accounts that are managed by
the Validator Bond program

Resets the stake authority of a stake account
after a Settlement has expired

Withdraws funded stake accounts that belong
to an expired Settlement

11/20

Security Audit - Marinade Validator Bonds

Findings

This section outlines all of our findings. They are classified into one of five severity levels, detailed in
Appendix C. In addition to these findings, Neodyme delivered the Marinade team a list of nit-picks and
additional notes which are not part of this report.

All findings are listed in Table 2 and further described in the following sections.

Table 2: Findings

Name Severity State

[ND-MND3-H1] Settlements Can Be Claimed To Locked Stake Accounts High Resolved
[ND-MND3-L1] No Safeguards for Compromised Operator Hot Wallet Low Resolved
[ND-MND3-I1] Unreliable Events Info Resolved
[ND-MND3-I2] Vote Account Version Is Not Checked Info Resolved

12/20

Security Audit - Marinade Validator Bonds

ND-MND3-H1 - Settlements Can Be Claimed To Locked Stake Accounts

Severity Impact Affected Component Status

High Anyone can withdraw every claim in all Settlements Resolved
settlements into locked stake accounts,
potentially extorting the receiver of the claim

Settlement claims can be executed by anyone. However, they can only be withdrawn into stake
accounts that are owned by the receiver of the claim. There is, however, no check that the stake
account is not locked. That means an attacker can create a locked stake account that belongs to the
claim receiver, but set themselves as the lockup authority, and then execute the claim. Now the funds

are unaccessible to the claim receiver, until the attacker releases the funds, opening up possibilities of
extortion.

Suggestion
The receiving stake account ought to not have an active lockup.
Remediation

The issue was fixed in commit 803ca0a8c6b368341640596cea3fd8d60e5ae433 by adding a

check to the ClaimSettlement instruction that fails the transaction if the receiving stake account
has an active lockup.

13/20

https://github.com/marinade-finance/validator-bonds/commit/803ca0a8c6b36834f640596cea3fd8d60e5ae433

Security Audit - Marinade Validator Bonds

ND-MND3-L1 - No Safeguards for Compromised Operator Hot Wallet

Severity Impact Affected Component Status

Low A single compromised hot wallet can be used Settlements Resolved
to withdraw all of the funds managed by the
contract instantaneously

The operator has full control over all funds managed by the contract, and can withdraw them at will.
As Marinade plans to use a hot wallet as the operator, safeguards should be put in place to limit the
damage an exploiter can do in this scenario.

Suggestion

A mechanism to delay the execution of a settlement, or limit the amount of outflows out of the protocol
per epoch should be implemented.

Remediation

The issue was fixed in commit 2d0e0926fee643b4b5e11d7d210f7993ec91c9ca by adding
a configuration option to Conf1g, which introduces a delay between creation and execution of a
settlement, as well as a way to abort a settlement before it is executed. This way either the admin or
the operator can react to any settlements that were created by an attacker before any funds are lost.

14/20

https://github.com/marinade-finance/validator-bonds/commit/2d0e0926fee643b4b5e11d7d210f7993ec91c9ca

Security Audit - Marinade Validator Bonds

ND-MND3-I1 - Unreliable Events

Severity Impact Affected Component Status

Info Events can be dropped in case of log truncation Events Resolved

Events are exclusively logged to the programs log. This log, however, gets truncated in case it gets too
long. This means events can’t be relied upon to pick up on all state changes.

Suggestion

Use CPI for event logging.

Remediation

The issue was fixed by using Anchors emit_cpi feature.

15/20

Security Audit - Marinade Validator Bonds

ND-MND3-12 - Vote Account Version Is Not Checked

Severity Impact Affected Component Status

Info The program can break in unpredictable Everything Resolved
ways if vote accounts layout should ever
change

Vote accounts are parsed by directly accessing and copying raw bytes out of the vote account, without
a version check. As vote accounts are explicitly versioned, there’s no guarantee that their layout won’t
change.

Suggestion

Parse the vote accounts version and assert that it’s one of the known ones.

Remediation

The issue was fixed in commit 15a9b42a5feae4dd7c3d6b83ffbbabb122961a13 by following
our suggestion and failing if the vote account version is not known.

16 /20

https://github.com/marinade-finance/validator-bonds/commit/15a9b42a5feae4dd7c3d6b83ffbbabb122961a13

Security Audit - Marinade Validator Bonds

About Neodyme

Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully understand
every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competitions,
called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption, reverse
engineering complicated algorithms, and much more. Through the years, many of our team members
have won national and international hacking competitions, and keep ranking highly among some of the
hardest CTF events worldwide. In 2020, some of our members started experimenting with validators
and became active members in the early Solana community. With the prospect of an interesting
technical challenge and bug bounties, they quickly encouraged others from our CTF team to look for
security issues in Solana. The result was so successful that after reporting several bugs, in 2021, the
Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

17/20

Security Audit - Marinade Validator Bonds

Methodology

Neodyme prides itself on not being a checklist auditor. We adapt our approach to each audit, investing
considerable time into understanding the program upfront and exploring its expected behavior, edge
cases, invariants, and ways in which the latter could be violated. We use our uniquely deep knowledge
of Solana internals, and our years-long experience in auditing Solana programs to even find bugs that
others miss. We often extend our audit to cover off-chain components in order to see how users could
be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list below.

+ Rule out common classes of Solana contract vulnerabilities, such as:

- Missing ownership checks

- Missing signer checks

- Signed invocation of unverified programs
- Solana account confusions

- Redeployment with cross-instance confusion
- Missing freeze authority checks

- Insufficient SPL account verification

- Missing rent exemption assertion

- Casting truncation

- Arithmetic over- or underflows

- Numerical precision errors

+ Check for unsafe design decisions that might lead to vulnerabilities being introduced in the
future

+ Check for any other, as-of-yet unknown classes of vulnerabilities arising from the structure of
the Solana blockchain

+ Ensure that the contract logic correctly implements the project specifications

« Examine the code in detail for contract-specific low-level vulnerabilities

+ Rule out denial of service attacks

* Rule out economic attacks

+ Check forinstructions that allow front-running or sandwiching attacks

+ Check for rug pull mechanisms or hidden backdoors

18 /20

Security Audit - Marinade Validator Bonds

Vulnerability Severity Rating

Critical Vulnerabilities that will likely cause loss of funds. An attacker can trigger them with little or no
preparation, or they are expected to happen accidentally. Effects are difficult to undo after they
are detected.

High Bugs that can be used to set up loss of funds in a more limited capacity, or to render the contract
unusable.

Medium Bugs that do not cause direct loss of funds but that may lead to other exploitable mechanisms,
or that could be exploited to render the contract partially unusable.

Low Bugs that do not have a significant immediate impact and could be fixed easily after detection.

Info Bugs or inconsistencies that have little to no security impact.

19/20

Security Audit - Marinade Validator Bonds

Neodyme AG

Dirnismaning 55

Halle 13

85748 Garching

E-Mail: contact@neodyme.io

https://neodyme.io

20/20

https://neodyme.io

	Introduction
	Summary of Findings

	Scope
	Project Overview
	Functionality
	On-Chain Accounts and Authorities
	Instructions

	Findings
	ND-MND3-H1 [High; Resolved] Settlements Can Be Claimed To Locked Stake Accounts
	ND-MND3-L1 [Low; Resolved] No Safeguards for Compromised Operator Hot Wallet
	ND-MND3-I1 [Info; Resolved] Unreliable Events
	ND-MND3-I2 [Info; Resolved] Vote Account Version Is Not Checked

	About Neodyme
	Methodology
	Vulnerability Severity Rating

