Security Audit - Marinade Native Staking
Proxy

conducted by Neodyme AG

Lead Auditor: Sebastian Fritsch

Second Auditor: Mathias Scherer

March 25" 2024

Security Audit - Marinade Native Staking Proxy

Table of Contents

1 Introduction

SummaryofFindings L

2 Scope

3 Project Overview

Functionality
On-Chain Accounts and Authorities
Instructions e

4 Findings
Appendices

A About Neodyme
B Methodology

C \Vulnerability Severity Rating

10

11

2/12

Security Audit - Marinade Native Staking Proxy

Introduction

During February and March of 2024, Marinade engaged Neodyme to conduct a detailed security analysis
of their on-chain native staking proxy program. Two security researchers from Neodyme, Sebastian
Fritsch and Mathias Scherer, conducted independent full audits of the contract between the 26th of
February and the 5th of March 2024. Both auditors have a long track record of finding critical and
other vulnerabilities in Solana programs, as well as in Solana’s core code itself, and have extensive
knowledge about the intricacies of Solana’s stake program, which the Marinade native staking proxy
interacts with.

The audit focused on the contract’s technical security. In the following sections, we present our
findings and discuss worst-case scenarios for authority compromise and provide some general notes
for considerations that may be useful in the future.

Neodyme would like to emphasize the high quality of Marinade’s work. Marinade’s team always re-
sponded quickly and competently to nitpicks and discussions of any kind. Their in-depth knowledge
of Solana development was apparent during all stages of the cooperation, including excellent and
crucial knowledge of Solana’s stake program. Evidently, Marinade invested significant effort and re-
sources into their product’s security. The contract’s source code has no unnecessary dependencies,
relying mainly on the well-established Anchor framework.

Summary of Findings

We are happy to confirm that no issues were found.

3/12

https://marinade.finance/
https://neodyme.io

Security Audit - Marinade Native Staking Proxy

Scope

The contract audit’s scope comprised one major and one minor component:

 Primarily, the Implementation security of the contract’s source code.
+ Additionally, the security of the overall design, including the off-chain bot.

Neodyme considers the source code, located at https://github.com/marinade-finance/native-staking,
in scope for this audit. Third-party dependencies are not in scope. Marinade only relies on the Anchor
library which is well-established.

The relevant source code revisions are:

e a7cb059d7c2538728ae3fdfbb91738e35d7034c6 « Last reviewed revision

4/12

https://github.com/marinade-finance/native-staking

Security Audit - Marinade Native Staking Proxy

Project Overview

This section briefly outlines Marinade’s native staking proxy functionality, design, and architecture,
followed by a detailed discussion of all related authorities.

Functionality

The native staking proxy allows SOL owners to have their Solana stake accounts managed by Marinade
without the smart contract risk present in, for example, stake pools.

For this, the native staking proxy utilizes Solana’s native Stake program, which provides the base layer
for stake accounts and validator delegations on Solana. The Solana Stake program offers two different
types of authorities for Stake accounts:

« The staker, who can perform operations like Delegate, Redelegate, Merge, but cannot
Withdraw.

+ Thewithdrawer,who canWithdraw SOL from an undelegated Stake account and can set the
staker as well as a new withdrawer authority.

By setting the staker authority, a user can authorize another entity to manage and delegate the stake
to, for example, the most performant validators. The native Stake Program guarantees that ownership
of the SOL is never lost but always remains in the hands of the withdrawer authority.

The native staking proxy leverages this functionality. A user can authorize the proxy to manage their
stake for them. This is done via an on-chain program, which mostly acts as a pass-through for most
instructions but also restricts some instruction arguments to harden the security of the protocol.

In addition to the on-chain Staking proxy, Marinade operates an off-chain bot, responsible for tracking
the current validators’ performance and redelegating stake to the most performant validators while
keeping the network decentralized.

5/12

https://github.com/solana-labs/solana/blob/b41798dabc280eae44b9f50d85d7d097473f7546/sdk/program/src/stake/state.rs#L166-L169
https://github.com/solana-labs/solana/blob/b41798dabc280eae44b9f50d85d7d097473f7546/sdk/program/src/stake/state.rs#L166-L169

Security Audit - Marinade Native Staking Proxy

On-Chain Accounts and Authorities

Marinade’s native staking proxy uses a single Root account per proxy instance to store all relevant
data:

#[account]
pub struct Root {
pub admin: Pubkey,
pub operator: Pubkey,
pub alternate_staker: Pubkey,
pub bumps: Bumps,
}

The Root specifies the admin and the operator, which are the two authorities present in the proxy.
The listing of instructions below summarizes which instruction is permissioned for which authority.
The alternate_staker field of the Root can be set by the admin and stores the prospective staker
if the SwitchStaker instruction is called.

Additionally, there exists the staker PDA (Program Derived Address), which is derived per proxy instance
via the following seeds: [Root: :STAKER_SEED, root.key(), root.bumps.staker].To autho-
rize Marinade’s native staking proxy to manage a stake account, a user has to set the staker authority to
Marinade’s staker PDA. By using a smart contract to manage the staker authority instead of an off-chain
hot wallet, the proxy limits the security implications of a private-key compromise. If the operator
wallet gets compromised, the attacker can only execute a subset of Stake program instructions as de-
scribed below and the proxy restricts the staker authority to an admin-defined alternate_staker,
thereby preventing a total loss of the staker authority. If, in contrast, the staker were directly an
off-chain wallet, Marinade could not guarantee those restrictions.

As the admin authority is not used for active stake account management, Marinade decided to manage
it via the Marinade DAO Council. The operator authority is used by the off-chain bot and therefore is
not managed via the DAO.

6/12

Security Audit - Marinade Native Staking Proxy

Instructions

The contract has a total of 10 instructions, which we briefly summarize here.

Instruction

InitRoot

SetOperator
SetAdmin

SetAlternateStaker

Merge

Split

Deactivate

Delegate

Redelegate

SwitchStaker

Category

Permissionless

Admin-Only
Admin-Only
Admin-Only

Operator-Only

Operator-Only

Operator-Only

Operator-Only

Operator-Only

Operator-Only

Summary

Initializes a new on-chain proxy instance. The Root
account holds information about the admin,
operator,alternate_staker, and bump seeds of
associated keys.

Sets a new operator.
Sets a new admin.
Sets a new alternate staker.

Merges two proxy-managed stake accounts into one.
The invariants of the native Solana stake program
apply.

Splits a proxy-managed stake account into two. The
second account gets newly created and has the same
authority structure as the original account. The
invariants of the native Solana stake program apply.

Deactivates the stake of a proxy-managed stake
account. The invariants of the native Solana stake
program apply.

Delegates the stake of a proxy-managed stake account
to a specific validator. The invariants of the native
Solana stake program apply.

Redelegates activated stake from a proxy-managed
stake account to a new proxy-managed stake account.
The invariants of the native Solana stake program
apply.

Switches the stake authority of a proxy-managed
stake account to the alternate staker defined in the
Root account.

7/12

Security Audit - Marinade Native Staking Proxy

Findings

We are happy to confirm that no issues were found in the native staking proxy by Marinade.

8/12

Security Audit - Marinade Native Staking Proxy

About Neodyme

Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully understand
every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competitions,
called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption, reverse
engineering complicated algorithms, and much more. Through the years, many of our team members
have won national and international hacking competitions, and keep ranking highly among some of the
hardest CTF events worldwide. In 2020, some of our members started experimenting with validators
and became active members in the early Solana community. With the prospect of an interesting
technical challenge and bug bounties, they quickly encouraged others from our CTF team to look for
security issues in Solana. The result was so successful that after reporting several bugs, in 2021, the
Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

9/12

Security Audit - Marinade Native Staking Proxy

Methodology

Neodyme prides itself on not being a checklist auditor. We adapt our approach to each audit, investing
considerable time into understanding the program upfront and exploring its expected behavior, edge
cases, invariants, and ways in which the latter could be violated. We use our uniquely deep knowledge
of Solana internals, and our years-long experience in auditing Solana programs to even find bugs that
others miss. We often extend our audit to cover off-chain components in order to see how users could
be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list below.

+ Rule out common classes of Solana contract vulnerabilities, such as:

- Missing ownership checks

- Missing signer checks

- Signed invocation of unverified programs
- Solana account confusions

- Redeployment with cross-instance confusion
- Missing freeze authority checks

- Insufficient SPL account verification

- Missing rent exemption assertion

- Casting truncation

- Arithmetic over- or underflows

- Numerical precision errors

« Check for unsafe design decisions that might lead to vulnerabilities being introduced in the
future

+ Check for any other, as-of-yet unknown classes of vulnerabilities arising from the structure of
the Solana blockchain

+ Ensure that the contract logic correctly implements the project specifications

« Examine the code in detail for contract-specific low-level vulnerabilities

+ Rule out denial of service attacks

+ Rule out economic attacks

« Check forinstructions that allow front-running or sandwiching attacks

+ Check for rug pull mechanisms or hidden backdoors

10/12

Security Audit - Marinade Native Staking Proxy

Vulnerability Severity Rating

Critical Vulnerabilities that will likely cause loss of funds. An attacker can trigger them with little or
no preparation, or they are expected to happen accidentally. Effects are difficult to undo after
they are detected.

High Bugs that can be used to set up loss of funds in a more limited capacity, or to render the contract
unusable.

Medium Bugsthat do not cause direct loss of funds but that may lead to other exploitable mechanisms,
or that could be exploited to render the contract partially unusable.

Low Bugs that do not have a significant immediate impact and could be fixed easily after detection.

Info Bugs or inconsistencies that have little to no security impact.

11/12

Security Audit - Marinade Native Staking Proxy

Neodyme AG

Dirnismaning 55

Halle 13

85748 Garching

E-Mail: contact@neodyme.io

https://neodyme.io

12/12

https://neodyme.io

	Introduction
	Summary of Findings

	Scope
	Project Overview
	Functionality
	On-Chain Accounts and Authorities
	Instructions

	Findings
	About Neodyme
	Methodology
	Vulnerability Severity Rating

