
Security Audit - Fogo Stake Pool

conducted by Neodyme AG

Lead Auditor: Sebastian Fritsch

Second Auditor: Nico Gründel

Administrative Lead: Jasper Slusallek

October 24, 2025

Security Audit - Fogo Stake Pool

Table of Contents
1 Executive Summary 3

Introduction 42
Summary of Findings . 4

3 Scope 5

Project Overview 6
Functionality . 6
Instructions . 6

4

Authority Structure and Off-Chain Components . 6

Findings 8
[ND-FSP-MD-01] Creation of transient wSOL account can be blocked 9

5

[ND-FSP-IN-01] Stake pool upgrades . 10

Appendices

A About Neodyme 11

Methodology 12B
Select Common Vulnerabilities . 12

C Vulnerability Severity Rating 14

2 / 15

Security Audit - Fogo Stake Pool

1 Executive Summary
Neodyme audited FirstSet’s on-chain Stake Pool program fork during October 2025. The stake pool
will be deployed on the Fogo Solana fork and will support Fogo-specific features.

The audit was performed as a differential audit between the official Anza Stake Pool and the fork by
FirstSet. According to Neodymes Rating Classification, 1 security relevant and 1 informational were
found. The number of findings identified throughout the audit, grouped by severity, can be seen in
Figure 1.

Critical 0

High 0

Medium 1

Low 0Se
ve

rit
y

Informational 1

Figure 1: Overview of Findings

The auditors reported all findings to the FirstSet developers, who addressed them promptly. The
security fixes were verified for completeness by Neodyme. In addition to these findings, Neodyme
delivered the FirstSet team a list of nit-picks and additional notes that are not part of this report.

3 / 15

Security Audit - Fogo Stake Pool

2 Introduction
During October 2025, FirstSet engaged Neodyme to do a detailed security analysis of their Fogo Stake
Pool. Two senior security researchers from Neodyme conducted independent audits of the contract
between the 17th of October 2025 and the 24th of October 2025. Both auditors have a long track record
of finding critical and other vulnerabilities in Solana programs, as well as in Solana’s core code itself,
and have extensive knowledge about the stake pool program.

The audit focused on the contract’s technical security. In the following sections, we present the new
features developed by FirstSet from a technical perspective and will explain our findings and provide
some general notes for considerations that may be useful in the future.

Summary of Findings

All found issues were quickly remediated. In total, the audit revealed:

0 critical 0 high-severity 1 medium-severity 0 low-severity 1 informational

issues. We further discuss all authorities in Section 4.3.

4 / 15

https://neodyme.io

Security Audit - Fogo Stake Pool

3 Scope
The contract audit’s scope comprised:

• a thorough check of all changes in the forked version of the SPL stake pool,
• a review of the correct usage of Fogo sessions

Neodyme considers the source code, located at https://github.com/Firstset/stake-pool-v2/tree/wsol-
adaptor, in scope for this audit. Third-party dependencies are not in scope. FirstSet only relies on the
original stake pool program and the Fogo SDK. During the audit, minor changes and fixes were made
by FirstSet, which the auditors also reviewed in-depth.

Relevant source code revisions are:

• 2bd399877ba81b7555a9f9f3a9a9b4ae858f7e18 · Start of the audit
• ff887c769f6746f05d55e8250f328252a7c9f8cc · Last reviewed revision

5 / 15

https://github.com/Firstset/stake-pool-v2/tree/wsol-adaptor
https://github.com/Firstset/stake-pool-v2/tree/wsol-adaptor

Security Audit - Fogo Stake Pool

4 Project Overview
This section briefly outlines Fogo Stake Pool’s functionality, design, and architecture, followed by a
detailed discussion of all related authorities.

Functionality

The FirstSet Stake Pool provides the same core functionality as the SPL Stake Pool (see https://github.
com/solana-program/stake-pool
). For more details, refer to the SPL Stake Pool audits at https://github.com/anza-xyz/security-audits/
tree/master/spl. In addition, FirstSet introduced two new instructions enabling wSOL deposits and
withdrawals. This feature allows integration with Fogo Sessions, which lets users delegate control
of their funds to Fogo, enabling spending without submitting transactions themselves. The new
deposit instruction unwraps wSOL before following the standard SPL deposit path. Similarly, the new
withdraw instruction rewraps SOL into wSOL after withdrawal.

Instructions

In addition to the existing instructions, two new instructions were added:

Instruction Category Summary

DepositWsolWithSession Permissionless Unwrap wSOL into SOL and deposit them into the
stake pool in return for pool tokens

WithdrawWsolWithSession Permissionless Burn pool tokens in exchange for stake pool SOL
and wrap them into wSOL tokens

Authority Structure and Off-Chain Components

There are several authorities present, which we will detail in the following sections.

Stake Pool owner

The pool manager of a stake pool is responsible for delegating deposited funds and managing the set
of validators in the pool. Therefore, the manager can control the resulting yield but cannot withdraw
or burn user funds.

Fogo Paymaster

Fogo Sessions allow a user to delegate control over their funds to a centralized Fogo Paymaster. Users
are able to define the scope of control with respect to allowed programs, amounts and time. In the
case of a compromise of the Paymaster infrastructure, those funds are at risk.

6 / 15

https://github.com/solana-program/stake-pool

https://github.com/solana-program/stake-pool

https://github.com/anza-xyz/security-audits/tree/master/spl
https://github.com/anza-xyz/security-audits/tree/master/spl
https://docs.fogo.io/fogo-sessions.html

Security Audit - Fogo Stake Pool

Upgrade Authority

FirstSet plans to use a 3/5 Squads multisig for their update authority, with two people from the FirstSet
team and the remaining three from the Fogo ecosystem. As the main program was not deployed at
the time of the audit, Neodyme has not verified this.

7 / 15

Security Audit - Fogo Stake Pool

5 Findings
This section outlines all of our findings. They are classified into one of five severity levels, detailed in
Appendix C. In addition to these findings, Neodyme delivered the FirstSet team a list of nit-picks and
additional notes which are not part of this report.

All findings are listed in Table 2 and further described in the following sections.

Identifier Name Severity Status

ND-FSP-MD-01 Creation of transient wSOL account can be
blocked

MEDIUM Resolved

ND-FSP-IN-01 Stake pool upgrades INFORMATIONAL Resolved

Table 2: Findings

8 / 15

Security Audit - Fogo Stake Pool

[ND-FSP-MD-01] Creation of transient wSOL account can be blocked

Severity Impact Affected Component Status

MEDIUM DoS wSOL Deposits Resolved

In the new DepositWsolWithSession instruction, FirstSet transfers wSOL from the user to a transient,
program-owned wSOL account, which is later closed to unwrap the SOL. It creates this transient
account using the system program’s CreateAccount instruction at the PDA ["transient_wsol",
user_pubkey.as_ref()]. However, CreateAccount fails if the target account already holds a nonzero
balance of lamports. Since the transient account address is predictable, an attacker could pre-fund it,
effectively blocking wSOL deposits for that user.

1
🔗 processor.rs, lines 2674-2694// Derive the *expected* PDA for

2 // the transient WSOL account
3 let (expected_transient_pda, transient_bump) = Pubkey::find_program_address(
4 &[b"transient_wsol", user_pubkey.as_ref()],
5 program_id,
6);
7
8 if expected_transient_pda != *transient_wsol_info.key {
9 msg!("transient_wsol_account does not match PDA derived from seeds");
10 return Err(ProgramError::InvalidSeeds);
11 }
12
13 // Create a temporary WSOL account for the session
14 let rent = Rent::get()?;
15 let rent_lamports = rent.minimum_balance(spl_token::state::Account::LEN);
16 let create_ix = solana_program::system_instruction::create_account(
17 fee_payer_info.key, // payer (wallet or session key)
18 transient_wsol_info.key, // new account address (PDA)
19 rent_lamports, // rent-exempt lamports
20 spl_token::state::Account::LEN as u64, // space for a token account
21 token_program_info.key, // OWNER **must** be SPL-Token!
22);

Resolution

We recommend using the idempotent account creation mechanism found in the
associated token program at https://github.com/solana-program/associated-token-account/
blob/main/program/src/tools/account.rs#L16. FirstSet quickly deployed a fix in commit
d147e71adeab8378dc5f51442f92fae1be9dbd26. Neodyme verified the fix.

9 / 15

https://github.com/Firstset/stake-pool-v2/blob/2bd399877ba81b7555a9f9f3a9a9b4ae858f7e18/program/src/processor.rs#L2674-L2694
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16
https://github.com/solana-program/associated-token-account/blob/main/program/src/tools/account.rs#L16

Security Audit - Fogo Stake Pool

[ND-FSP-IN-01] Stake pool upgrades

Severity Impact Affected Component Status

INFORMATIONAL LoF Balance tracking Resolved

FirstSet forked off from the SPL stake pool before the fixes for a rare LoF bug were published. We added
them to the coordinated disclosure process, and FirstSet quickly updated its program. As the Mainnet
program was not launched yet, no user funds were at risk at any time.

Resolution

FirstSet applied the patches in PR 19. Neodyme verified the fixes.

10 / 15

https://github.com/Firstset/stake-pool-fogo/pull/19

Security Audit - Fogo Stake Pool

A About Neodyme
Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully under-
stand every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competi-
tions, called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption,
reverse engineering complicated algorithms, and much more. Through the years, many of our team
members have won national and international hacking competitions, and keep ranking highly among
some of the hardest CTF events worldwide. In 2020, some of our members started experimenting
with validators and became active members in the early Solana community. With the prospect of an
interesting technical challenge and bug bounties, they quickly encouraged others from our CTF team
to look for security issues in Solana. The result was so successful that after reporting several bugs, in
2021, the Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

11 / 15

Security Audit - Fogo Stake Pool

B Methodology
We are not checklist auditors.

In fact, we pride ourselves on that. We adapt our approach to each audit, investing considerable time
into understanding the program upfront and exploring its expected behavior, edge cases, invariants,
and ways in which the latter could be violated.

We use our uniquely deep knowledge of Solana internals, and our years-long experience in auditing
Solana programs to find bugs that others miss. We often extend our audit to cover off-chain compo-
nents in order to see how users could be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list here.

Select Common Vulnerabilities

Our most common findings are still specific to Solana itself. Among these are vulnerabilities such as
the ones listed below:

• Insufficient validation, such as:
‣ Missing ownership checks
‣ Missing signer checks
‣ Signed invocation of unverified programs
‣ Account confusions
‣ Missing freeze authority checks
‣ Insufficient SPL account verification
‣ Dangerous user-controlled bumps
‣ Insufficient Anchor account linkage

• Account reinitialization vulnerabilities
• Account creation DoS
• Redeployment with cross-instance confusion
• Missing rent exemption assertion
• Casting truncation
• Arithmetic over- or underflows
• Numerical precision and rounding errors
• Anchor pitfalls, such as accounts not being reloaded
• Non-unique seeds
• Issues arising from CPI recursion
• Log truncation vulnerabilities
• Vulnerabilities specific to integration of Token Extensions, for example unexpected external

token hook calls

12 / 15

Security Audit - Fogo Stake Pool

Apart from such Solana-specific findings, some of the most common vulnerabilities relate to the
general logical structure of the contract. Specifically, such findings may be:

• Errors in business logic
• Mismatches between contract logic and project specifications
• General denial-of-service attacks
• Sybil attacks
• Incorrect usage of on-chain randomness
• Contract-specific low-level vulnerabilities, such as incorrect account memory management
• Vulnerability to economic attacks
• Allowing front-running or sandwiching attacks

Miscellaneous other findings are also routinely checked for, among them:
• Unsafe design decisions that might lead to vulnerabilities being introduced in the future

‣ Additionally, any findings related to code consistency and cleanliness
• Rug pull mechanisms or hidden backdoors

Often, we also examine the authority structure of a contract, investigating their security as well as the
impact on contract operations should they be compromised.

Over the years, we have found hundreds of high and critical severity findings, many of which are highly
nontrivial and do not fall into the strict categories above. This is why our approach has always gone
way beyond simply checking for common vulnerabilities. We believe that the only way to truly secure
a program is a deep and tailored exploration that covers all aspects of a program, from small low-level
bugs to complex logical vulnerabilities.

13 / 15

Security Audit - Fogo Stake Pool

C Vulnerability Severity Rating
We use the following guideline to classify the severity of vulnerabilities. Note that we assess each
vulnerability on an individual basis and may deviate from these guidelines in cases where it is well-
founded. In such cases, we always provide an explanation.

Severity Description

CRITICAL Vulnerabilities that will likely cause loss of funds. An attacker can trigger them
with little or no preparation, or they are expected to happen accidentally.
Effects are difficult to undo after they are detected.

HIGH Bugs that can be used to set up loss of funds in a more limited capacity, or to
render the contract unusable.

MEDIUM Bugs that do not cause direct loss of funds but that may lead to other
exploitable mechanisms, or that could be exploited to render the contract
partially unusable.

LOW Bugs that do not have a significant immediate impact and could be fixed easily
after detection.

INFORMATIONAL Bugs or inconsistencies that have little to no security impact, but are still
noteworthy.

Additionally, we often provide the client with a list of nit-picks, i.e. findings whose severity lies below
Informational. In general, these findings are not part of the report.

14 / 15

Security Audit - Fogo Stake Pool

Neodyme AG

Dirnismaning 55
Halle 13
85748 Garching
Germany

E-Mail: contact@neodyme.io

https://neodyme.io

15 / 15

mailto:contact@neodyme.io
https://neodyme.io

	Executive Summary
	Introduction
	Summary of Findings

	Scope
	Project Overview
	Functionality
	Instructions
	Authority Structure and Off-Chain Components
	Stake Pool owner
	Fogo Paymaster
	Upgrade Authority

	Findings
	[ND-FSP-MD-01] Creation of transient wSOL account can be blocked
	Resolution

	[ND-FSP-IN-01] Stake pool upgrades
	Resolution

	About Neodyme
	Methodology
	Select Common Vulnerabilities

	Vulnerability Severity Rating

