
Security Audit – Firedancer v0.1
conducted by Neodyme AG

Auditor: Alain Rödel

Auditor: Felipe Romero

Auditor: Konstantin Bücheler

Auditor: Nico Gründel

Auditor: Ruben Gonzales

Auditor: Simon Klier

Auditor,
Administrative Lead: Thomas Lambertz

June 30th 2024

Security Audit – Firedancer v0.1

Table of Contents

Executive Summary 4

1 Introduction 5

2 Scope 6

3 Firedancer v0.1 Design 7
Detailed Firedancer Architecture . 7

4 Attack Surface Overview 10
Recommendation for Agave Compatibility . 12

5 Sandbox Evaluation 13
Tile Sandboxes . 13
Agave Sandbox . 14
Information Leak Requirements . 15

6 Exploit Investigation 16
Possible Impacts . 16
Sandbox Secrets . 17

7 Exploit Paths 19
Shared Memory Between Tiles . 19
TOCTOU Investigation . 21
Inter-Tile Trust-Based Exploit Chains . 23

8 Patches to Agave 24
Interface Robustness . 24
Interactions During Leader Slots . 25

9 Tile Evaluation 27
Sign Tile and Cryptography Evaluation . 27
Quic Tile . 29
Pack Tile . 30
Shred Tile . 33

10 Datastructures 35

2 / 67

Security Audit – Firedancer v0.1

11 Findings 36
[ND-FD1-MD-01] Hashmaps are vulnerable to HashDoS attacks 37
[ND-FD1-HI-01] QUIC tile DoS with INITIAL and CONNECTION CLOSE frames 39
[ND-FD1-MD-02] QUIC vulnerable to a low bandwith DoS 42
[ND-FD1-MD-03] Quic implementation vulnerable to slowloris attacks 46
[ND-FD1-LO-01] Risk of Sign-Tile Exhaustion . 47
[ND-FD1-HI-02]Stake weight sending has easy to reach DoS by creating more than 40200

validators . 49
[ND-FD1-MD-04] Potential panic in fd_stake_ci_dest_add_fini 52
[ND-FD1-MD-05] Firedancer v0.1’s limit for number of shreds in a FEC-set is lower than

Agave . 53
[ND-FD1-LO-02] Firedancer does not check shred version 54
[ND-FD1-LO-03] Firedancer does not check for consistency between code and data shreds 55
[ND-FD1-MD-06] Firedancer does not handle legacy shreds correctly 57
[ND-FD1-NI-01] QUIC Nitpicks . 58
[ND-FD1-LO-04] PoH trusts the microblock_trailer it got from pack too much 61
[ND-FD1-LO-05] Bank pointers are unprotected . 63
[ND-FD1-LO-06] Pack trusts verify tile for parsing transactions 64
[ND-FD1-IN-01] Agave joins shred_store workspace as RW, could be RO 65

Appendices

A About Neodyme 66

3 / 67

Security Audit – Firedancer v0.1

Executive Summary
Neodyme was contracted to do a time-boxed audit of Firedancer’s first milestone version 0.1, during
the end of April, May and June 2024.

The audit covers functionality, design, attack surface, and sandbox isolation. Potential exploit paths
and their impact were investigated, patches to Agave were reviewed for robustness, and the interaction
between Agave and Firedancer during leader slots was analyzed. Additionally, the four custom tiles
(sign, quic, pack, and shred) and the internal data structures used by Firedancer were examined.

Figure 1: Overview of Findings

No remote code execution vulnerabilities were found. The findings mainly involved denial-of-service
in various forms and mismatches between Agave and Firedancer implementation behavior. No
critical vulnerabilities were identified. Two high-severity vulnerabilities were found, one of which
would allow an attacker to crash Firedancer remotely.

Overall, Firedancer was found to be well-designed, with most issues stemming from the lack of a
solid Solana validator specification, leading to slight mismatches in behavior. Firedancer’s developers
employ a defense in depth approach, of which the excellently implemented sandboxing is an integral
part.

4 / 67

Security Audit – Firedancer v0.1

1 | Introduction
Jump Crypto engaged Neodyme to do a detailed security analysis of their Firedancer Solana validator
– specifically, the first Milestone, Version 0.1. The audit was conducted by seven Senior security
researchers, each focusing on different aspects, between April 22nd and June 30th 2024. Multiple
auditors have a long track record of finding critical and other vulnerabilities in both Solana programs
and Validator implementations on multiple chains. Combined, they have prevented the theft of at
least $1b worth of tokens through reports of critical bugs.

Firedancer, a second implementation of a Solana validator client, still relies heavily on the original
client, Agave. Custom components include networking, transaction ingress and validation, and much
of the leader functionality around block packing.

This report first describes relevant parts of Firedancer’s design, providing a security-focused overview
of its architecture. Using this foundation, an overview of potential attack surfaces is presented and the
sandboxes for individual functionalities are investigated.

The report examines the potential impact of remote code execution (RCE) in various components
and considers how an attacker might move between sandboxes. The patches to Agave are briefly
investigated, highlighting the interaction between Agave and Firedancer during leader slots.

The four most security-critical functionalities – Signing, Quic, Pack, and Shred – are examined in-depth,
followed by a review of the data structures used. All findings and their mitigations are presented.

5 / 67

https://jumpcrypto.com/firedancer/
https://neodyme.io

Security Audit – Firedancer v0.1

2 | Scope
The scope of this audit can be succinctly summarized as encompassing everything relevant to
Firedancer v0.1. Given the time-boxed nature of the audit, efforts were made to be time-efficient, with
the focus shifting over time based on initial findings.

Audit Approach

We began with an in-depth examination of the underlying communication architecture. It was apparent
that many of the individual components either had alread undergone significant scrutiny, or were too
reliant on the caller integration to audit on their own. Finding them to be robust, we then moved on to
explore higher-level, functional attack vectors. Our primary focus shifted to identifying bugs that could
cause practical issues both in the current implementation and in future iterations of Firedancer once it
operates independently of Agave.

Key Focus Areas

One main areas of focus for the audit were thus the functional tiles, namely Net, Quic, Verify, Dedup,
Pack, Shred, Sign, Metric, Bank, Poh and Store. Other important areas were:

• Behavior differences between Firedancer and Agave
• Sandbox implementation and hardening
• Cryptography
• The Agave FFI interface

Source Code Revisions

The source code located at https://github.com/firedancer-io/firedancer/ is in scope for this audit.
Specifically, the audit focused on the Firedancer v0.1 parts of the code mentioned above, excluding
components such as the runtime, blockstore, consensus, and gossip components, which remain part
of Agave.

Throughout the audit, the Firedancer codebase underwent several changes. We regularly updated our
analysis to include the latest commits. The relevant source code revisions for this audit are:

Relevant source code revisions are:

• 89da411981808437f094de2682e70ee8d7e44d52 • Start of the audit
• fdd89735be64a4d8e14e8db27b85630f52c473b1 • Last revision considered

6 / 67

https://github.com/firedancer-io/firedancer/

Security Audit – Firedancer v0.1

3 | Firedancer v0.1 Design
The Solana network relies on validators to maintain the network’s state, verify transactions, and facili-
tate the proof-of-stake consensus mechanism. Currently, the only existing validator implementation is
the Agave validator, developed by Anza and formerly referred to simply as ‘validator’ by Solana Labs.

Firedancer will be an alternative validator client, maintaining compatibility with the existing network.
As such, it is imperative that Firedancer replicates the functional nuances of the Agave validator.
Presently, Agave’s implementation is entirely defined by its existing framework, lacking a formal
specification. This absence poses significant challenges in developing a compatible alternative.

The initial phase of Firedancer’s development, sometimes referred to as Firedancer v0.1, introduces
partial replacements in the Agave validator infrastructure. It substitutes major components like the
networking stack, proof-of-history, and most leader functionalities, including block-packing. However,
other critical components such as storage, runtime, replay, and consensus continue to utilize the
original Agave code.

Notably, Firedancer is programmed in C, diverging from Agave’s use of Rust. This strategic choice in
programming language aims to minimize the potential impact of compiler bugs and language-specific
behaviors on network stability. Given the priority for high performance, C was selected as the most
suitable programming language for Firedancer.

Detailed Firedancer Architecture

Firedancer adopts a very different architectural approach compared to Agave, favoring a more stream-
lined and explicitly defined dependency structure. Operations in Firedancer are segmented into tasks
housed within ‘Tiles’. These tiles operate on shared memory areas, termed ‘workspaces’, which facilitate
high-performance, optionally flow-controlled memory queues, known as ‘Links’.

Most tiles are sandboxed, each running in a separate process. This initial setup does a lot of work
to ensure that each tile can only access the required shared memory with the correct read or write
permissions. The exception from this is the Agave part, which remains largely unconstrainted.

Firedancer is composed of ten primary tiles, each serving distinct functions:

• Sign (aka Keyguard): Manages sensitive key material, providing signing services to other tiles.
• Net: Handles network ingress and egress.
• Quic: Processes QUIC protocol traffic from the Net tile.
• Verify: Verifies signatures and contents of incoming transactions.
• Dedup: Removes duplicate transactions.

7 / 67

Security Audit – Firedancer v0.1

• Pack: Packs blocks when the validator is a leader.
• Bank: Processes blocks from the Pack tile using the Agave runtime and updates the state.
• PoH (Proof of History): Manages Solana’s proof-of-history component.
• Shred: Splits blocks created by the runtime into fragments (shreds), and reassembles shreds

coming in from the network.
• Store: Connects to the Agave blockstore for shred storage.

Here is a full architecture diagram, including all links between different tiles.

8 / 67

netnetnet

quicquic

net_quic
(fully connected)

quic_net
(fully connected)

the whole wide world

quick_verify (one for
each quic)

verify

dedup

pack

bank

poh
(agave addr space)

shred

store

sign

metric

verify_dedup

dedup_pack

pack_bank

bank_poh

poh_shred

shred_store (x
#shred)

quic_sign
sign_quic

(one pair for each quic tile)

shred

bankbank [i]

shred

verifyverify

shred_net
net_shred

gossip

gossip_pack

stake_out

poh_pack

crds_
shred

shred_sign
sign_shred

(one pair for each shred tile)

every
single
tile

tile

link

default out link

agave

2 link in 2 dirs

stake_out
stake_out

crds_shred

bank_busy[i]
R

RW

RW

uses fseq

shared object

shred_version

W

R

INCOMING: network packets from web (net_rx_aio_send).
Sanity checks ipv4/udp, branches on Port:
- quic -> redirect to quic tile,
- legacy UDP -> redirect to quic tile
- shred -> redirec to shred tile

INCOMING from shred: shreds -> send

INCOMING from quic: quic-packets -> send

INCOMING: quic or legacy packet from net
- round-robins based on "hash(source_ip)+port"
- if quic, does quic engine + callbacks (eg quic_stream_receive).
- Each quick stream gets reassembled into one TX. Then forwards TX to verify
- if legacy, does legacy_stream_notify, which forwards TX to verify

Spins on sign tile during quic conn establishment.
Before forwarding, appends 'descriptor' to tx: append_descriptor() (essentially a 'parsed' tx)

INCOMING: [raw solana transactions (V1/2), descriptor (parsed repr of tx), len of orig_tx]
round-robins on sequence-id
verifies length, trusts parsed TX otherwise, verifies signatures.
All TXs that are valid get passed on to dedup.
each tile has own dedup tcache via first 8 tx-sig bytes. Only *new* successful sigs are passed on.

INCOMING: same raw tx as verify, but knowing sig checks out
uses local tcache for dedup, trusting the same ha_dedup_tag verify generated and passed on.
Set mcache sig tag to 0, so pack can determine source of TXs

INCOMING: Transactions from Dedup and Gossip. And 'leader' notifications from PoH.
- Gossip: Parse tx, if parses include in microblock
- Dedup: Just include in microblock
Has: 'Extra Queue'
Has: Packing algo. Has set amount of CU for votes.
When leader: Packs microblocks, respecting CU/locking/etc.
When Microblocks are full (or timed-out), forwards them to bank (if one is idle)
Sends packing-done messages via pack_bank link to PoH

INCOMING: Microblocks from pack.
- Pack chooses which bank-tile to send a microblock to
- Chosen bank executes microblock:
- fd_bank_abi_txn_init -> convert TXs into solana bank format
- fd_ext_bank_load_and_execute_txns -> try to execute transactions
- fd_ext_bank_commit_txns -> commit TXs to solana store
- hash transactions
- publish microblock plus tx-hash to PoH

INCOMING: microblocks for executed TXs from bank
- runs the PoH hash-chain synchronously (in after_credit)
- keeps track of empty 'skipped slot' ticks, in case they're needed when becoming leader
- if leader, publishes (empty) tick
- if leader, publishes microblocks in after_frag (from bank).
- This also unlocks the used accounts.
- only contains the 'executed' transactions (ie no lock failure)

pack_bank

INCOMING:
- shreds from NET -> redistribute
- batches from PoH -> genreate shreds, FEC, publish to net.
- once a full set -> publish to blockstore
- CRDS contact data -> for contact info on where to send shreds
- stake_in -> for weighted distribution on where to send shreds
- sign: for signing shreds

Publishes fd_shred34_t to store, shreds to net.

INCOMING:
- shreds+FEC from shredder.
- publishes shreds to agave blockstore with `fd_ext_blockstore_insert_shreds`

is_labs

is_labs

is_labs

Security Audit – Firedancer v0.1

4 | Attack Surface Overview
With this rough understanding of what Firedancer v0.1 does, we can roughly think about the attack
surface.

Remote Code Execution (RCE)

Given that Firedancer v0.1 is implemented in C, a language known for its susceptibility to bugs like
buffer overflows that can lead to RCE, this represents a significant risk, much more so than for Agave.
Firedancer aims to be very high performance and hence does not do automated bounds-checks on
everything, just where required. An RCE vulnerability could allow an attacker to execute arbitrary code
on the validator, potentially compromising the entire node. The exact impact is investigated in more
detail later in this report in Section Exploit Investigation.

Denial of Service (DoS)

Firedancer v0.1 might also be vulnerable to DoS attacks, which could render the validator slow or
unresponsive. This might happen via resource exhaustion attacks, where an attacker deliberately
consumes excessive computational or memory resources. It may also occur due to errors such as
null-pointer dereference, which would crash the tile and, with it, the whole validator. Firedancer v0.1
lacks the capability to autonomously recover from crashes in any of its tiles, which means any crash
could cause node unresponsiveness. While some components mainly impact the validator’s leader
capabilities, others could disrupt overall validator operations, including voting.

Behavior Mismatches with Agave

Discrepancies between Agave and Firedancer v0.1 present a significant area of concern. Divergences in
block or transaction acceptance between the two could disrupt network consensus. We operate under
the assumption that Agave, as the existing standard, correctly validates transactions and blocks.

Non-critical discrepancies during transaction handling are manageable; Firedancer v0.1 may simply
limit some network functionalities, such as not accepting all transactions into blocks it creates as
leader. However, divergences in block acceptance and creation are more problematic.

If Agave creates and accepts blocks that Firedancer v0.1 rejects, Firedancer nodes might not be able
to replay the state, and diverge from the network, potentially breaking network consensus. However,
because Firedancer v0.1 only introduces a subset of new functionalities, the risk associated with
such mismatches is somewhat limited. Most of Firedancer v0.1’s runtime, including the full replay
stage and repair mechanisms, are inherited from Agave. This ensures that the Agave component

10 / 67

Security Audit – Firedancer v0.1

of Firedancer v0.1 retains full capability for fetching missing shreds, processing them according to
Agave’s logic, extracting transactions, processing them in the bank, replaying transactions, generating
votes, and distributing these votes via gossip. The only aspect of the non-leadership chain influenced
by the newly implemented Firedancer code involves certain Proof of History (PoH) utility functions.
Importantly, PoH verification of replayed transactions remains a function of the Agave side, though
all leader-required PoH functionalities, such as resetting PoH when consensus advances or when
switching the current bank, are managed by Firedancer. Given this reliance on Agave for essential
checks and balances, small anomalies in Firedancer v0.1’s behavior often do not lead to practical
issues. For example, even if Firedancer v0.1’s net or shred-reassembly components erroneously drop
valid data, Agave’s independent repair pathways can rectify these errors, preventing the validator from
falling of the network.

In the context of Firedancer v0.1/Milestone 1, a more pressing practical issue is erroneously accepting
data that should be rejected, subsequently forming a block that the rest of the network will refuse. It is
likely that even other Firedancer v0.1 nodes will reject the block, with the only big replay differentiator
being shred-reassembly. However, while the leadership functionality is crucial for individual validators
and impacts the number of transactions Solana can process, it is not immediately critical to overall
network operation, as other validators will reject an invalid block. Theoretically, producing an invalid
block is a slashable offense, which should result in the validator’s stake being slashed. However, there
is currently no automated protocol in place for this enforcement.

To summarize, since pretty much all of gossip, replay and repair is done in Agave, it is quite hard for
practical network issues to appear when Firedancer v0.1 behaves weirdly. For replay, all checks are
done in Agave, and if the net-/shred-reassembly-component of Firedancer v0.1 drops valid data, Agave
can repair it via a fully independent code path.

Additionally, as long as only few nodes in the network run Firedancer v0.1, the network will survive
most problems relating to it. As soon as a significant amount of stake is delegated to Firedancer v0.1
nodes, the Solana network will halt on RCE/DOS/Fork. In theory this limit is 33%, as at least 2/3 of
stake needs to agree on a fork for it to be rooted. Indeed, in the past we’ve seen 10% of the network go
offline without significant issues. However, in practice, the network will be considerably impacted well
before the exact 33% boundary is reached.

Bugs in Agave

Finally, vulnerabilities present in Agave could also affect Firedancer v0.1. This aspect, however, falls
outside the scope of this audit.

11 / 67

Security Audit – Firedancer v0.1

Recommendation for Agave Compatibility

As highlighted in the section above, it is crucial that both Firedancer and Agave accept and reject the
same blocks and transactions. The necessary checks for this are not explicitly documented and are
distributed throughout the Agave codebase. Firedancer implements these checks as well, but often in
a different format. For example, transaction sanitization checks that are consolidated in one place
in Agave are distributed across different tiles in Firedancer. Understanding why certain checks are
implemented in specific places requires substantial knowledge of Agave’s internals.

Despite our efforts to identify all discrepancies, it is likely that some have been missed. The dis-
tributed nature of these checks complicates the process of ensuring consistency between Agave and
Firedancer.

Recommendation

We recommend adding code references, preferably using permanent links, in all places where
Firedancer performs checks that have to be equivalent to Agave. This will provide clarity on the
necessity of each check and make it possible to verify consistency between Agave and Firedancer. It
will also make confident maintenance to the codebase possible.

12 / 67

Security Audit – Firedancer v0.1

5 | Sandbox Evaluation
To mitigate the risks associated with Remote Code Execution (RCE) vulnerabilities, Firedancer v0.1
employs a robust sandboxing strategy. Its design is quite remarkable, locking down the processes to
the furthest extent possible and hence limiting the potential damage from exploits.

Firedancer v0.1 has two kinds of processes, normal tiles and the Agave sandbox, which differ signifi-
cantly.

Tile Sandboxes

In production mode, all tiles, except for the tiles interacting directly with Agave, run in their own process
with their own sandbox, setup with fd_sandbox in fd_topo_run_tile. For development purposes,
there is also a mode that uses threads instead of processes along with significantly less sandboxing.
Due to relevance, however, this mode was not investigated in more detail.

The initialization sequence for each tile process is complex, as it has to ensure the greatest possible
separation and sandboxing, while at the same time still connecting the tiles. By spawning new processes
for each tile, Firedancer reaps the full benefits of address-space-layout-randomization (ASLR). For
performance reasons, Firedancer uses huge pages as stacks, so it cannot simply execve() into a new
process. One main process thus spawns several child processes via execve(), and then clone()s
them to a process using a huge-page-backed stack. This new process then first memory-maps all
required shared memory with other tiles, runs a priviledged_init function specific to the tile, then
drops all privileges and sandboxes itself.

The exact sandbox process is well-documented in fd_sandbox.h, so we refrain from repeating all
details here. Notably, the sandbox includes:

• A whitelist of open file descriptors
• Dropping privileges to a specified UID/GID
• Unsharing almost all namespaces, including the mount-namespace
• Prohibiting core-dumps
• Clearing the capability bounding set
• Removing environment variables

Post-initialization, the process becomes highly restricted, limited to operations on shared memory
and predefined system calls.

13 / 67

https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/util/sandbox/fd_sandbox.c#L266-L266
https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/disco/topo/fd_topo_run.c#L50-L50
https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/util/sandbox/fd_sandbox.h#L13-L13

Security Audit – Firedancer v0.1

System Call Filtering with Seccomp

A seccomp filter further narrows the system call surface to a minimal set, tailored to the needs of each
tile. The implementation details are defined in custom domain-specific language (DSL) files named
.seccomppolicy. Comments in these files justify the capabilities granted or restricted.

The granted permissions are mostly just writing to the logfile-file-descriptor. In addition, the network
tile has very limited send and recv syscalls allowed, and quic can call getrandom.

The tile with the broadest permissions is the metrics tile, which hosts an HTTP server and thus requires
permissions to read, write, close, and poll various file descriptors, dictated by the needs of an HTTP
connection. However, this does not constitute a security issue: the only way to get new file descriptors
is via the whitelisted accept syscall passing new incoming connections, and there is a sanity-check
that there are no unwanted open file descriptors when the sandbox is initialized.

The quic tile is allowed to call getrandom, which in theory would allow it to exhaust the system
randomness entropy, potentially blocking other consumers of randomness on the system.

Overall, this is a very strong sandbox design, that restrics almost everything down to syscall arguments,
and everything required is individually whitelisted.

Agave Sandbox

There is one significant exception to the sandboxing approach: the Agave validator process. Agave
wasn’t originally designed with sandboxing in mind and is challenging to restrict effectively.

Three of Firedancer v0.1’s tiles need direct access to Agave functionality. Specifically, the store, bank,
poh tiles. To facilitate this access, they are run as threads within the Agave process and address space.
Each of these tiles has full read/write capabilities into any other tile or link, effectively functioning as a
single security boundary.

A partial sandbox is still implemented, although it is much more limited compared to Firedancer
v0.1’s internal sandboxing. Each tile in Agave’s address space is spawned as a thread with minimal
sandboxing measures, involving only changes to UID/GID.

Outside of this unsandboxed area, the most vulnerable security aspect of the sandbox is the shared-
memory links between tiles, which will be examined in more detail in Section [Shared Memory Between
Tiles][#shared-memory-between-tiles].

14 / 67

https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/app/fdctl/run/tiles/quic.seccomppolicy#L21-L21
https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/app/fdctl/run/run_solana.c#L206

Security Audit – Firedancer v0.1

Information Leak Requirements

As shown later on, the security of the inter-tile communication boundary is currently fairly weak. This
means that, in theory, an attacker gaining RCE in an upstream tile can propagate this through multiple
sandboxes, always exploiting the following one via the shared-memory link.

However, all tiles run in different processes with a different randomized address-space layout. Even
using a powerful ‘write-what-where’ primitive, an exploit needs to know what to write, and where.
This usually requires a leak of information, such as a pointer onto the heap, or a function-pointer.

The current design of Firedancer v0.1 follows a linear structure where earlier tiles can send data to
later tiles but cannot receive data back. The shared-memory areas are usually writable only by the
publisher, which would be the attacker, not the consumer. So there cannot be any leak of data on this
link. Hence, despite the relatively weak inter-tile communication security, ASLR significantly mitigates
the risk of exploitation.

One notable area of concern was the hugetables explicitly mapped for the stack, and the location of
other shared-memory areas. However, Firedancer effectively randomizes their locations, complicating
any attempts at information leaks.

There are leakless exploitation techniques, however applicable scenarios for these are generally hard
to find and need the correct primitives. They often rely on partial-overwrites of values, and relative-
addressing gadgets. There is a lot of prior work with regards to leakless heap-exploitation in glibc, but
those techniques also typically rely on brute force to bypass randomization, with incorrect guesses
resulting in crashes.

One other way to get leaks are speculative hardware attacks. There have been instanaces of cross-
process leaks used to exploit chromium:

• Escaping the Chrome Sandbox with RIDL
• Mitigating RIDL Side-Channel Attack in Microsoft Edge on Windows

This exploit in particular relies on the fact that processes share the same core, which might be hard or
impossible to provoke in Firedancer, depending on how exactly the tile threads are pinned to cores.
But there might be other such bugs that even work cross-core.

15 / 67

https://cwe.mitre.org/data/definitions/123.html
https://googleprojectzero.blogspot.com/2020/02/escaping-chrome-sandbox-with-ridl.html
https://microsoftedge.github.io/edgevr/posts/Mitigating-RIDL-Side-Channel-Attack-in-Microsoft-Edge-on-Windows/

Security Audit – Firedancer v0.1

6 | Exploit Investigation

Possible Impacts

To evaluate the potential risks associated with Remote Code Execution (RCE) in each tile of Firedancer
v0.1, we will analyze the functional requirements without considering sandbox escapes. This gives
insight into what each sandbox protects, and where an attacker would want to get RCE. It also provides
some view into what kind of issues accidental bugs in the tiles might have on the system, even without
an active attacker being present. We assume that less than 2/3rd of the stake is running Firedancer
v0.1, ensuring Agave retains a superminority capable of halting consensus in case of issues.

Each tile is crucial for the proper functioning of Firedancer v0.1. The failure of any single tile, such as
through a null-pointer dereference, will shut down the entire validator. The impact of different types
of bugs varies, with RCE offering significant flexibility for non-functional impacts.

Below, we define categories for consequences of bugs we expect are most likely:

1. ‘REPAIR’: Agave has to repair all blocks. Votes continue to be sent and processed, but block
production ceases.

2. ‘NOBLOCK’: Block production ceases.
3. ‘VOTE_ONLY’: Firedancer v0.1 can only produce vote-only blocks, as votes are ingressed via

gossip.
4. ‘PACK’: The attacker gains significant control over the content of blocks this node produces when

it acts as leader.
5. ‘ILLEGAL’: The attacker can cause Firedancer v0.1 to produce illegal, slashable blocks.
6. ‘LEAK’: The attacker can leak cryptographic key material, notably the validator identity or vote

key.
7. ‘AGAVE’: The attacker can take over the Agave runtime, consensus, and pretty much everything

else. If more than 1/3rd of the stake runs Firedancer v0.1, this could halt consensus, necessitating
a hardfork to resolve. Additionally, the laxer sandbox allows easier interaction with the outer
world, or compromise of the server as a whole.

Using these impact categorizations, we consider the impact of bugs causing either a crash, unrespon-
siveness or RCE individually for each tile. The table below summarizes the consequence of each. Note
that RCE always also implies an impact of unresponsiveness and crash, since those are trivial to cause
with RCE.

16 / 67

Security Audit – Firedancer v0.1

Tile Crash Unresponsive RCE

net Full DoS NOBLOCK/REPAIR PACK

quic Full DoS VOTE_ONLY PACK

verify Full DoS VOTE_ONLY PACK/ILLEGAL

dedup Full DoS VOTE_ONLY PACK/ILLEGAL

pack Full DoS NOBLOCK PACK/ILLEGAL

bank Full DoS NOBLOCK PACK/ILLEGAL/AGAVE/LEAK

poh Full DoS NOBLOCK PACK/ILLEGAL/AGAVE/LEAK

shred Full DoS NOBLOCK/REPAIR ILLEGAL

store Full DoS NOBLOCK/REPAIR PACK/ILLEGAL/AGAVE/LEAK

sign Full DoS NOBLOCK LEAK

metrics Full DoS N/A N/A

Notably, since all of replay still runs in Agave, a simple node unresponsiveness without crash likely only
leads to halting of block production. Additionally, there is little option for Firedancer to permanently
fork off. Only Firedancer v0.1 nodes with compromised Agave/Replay might participate in a split-brain.
An attacker likely can’t benefit from producing illegal blocks, since neither Agave nor other Firedancers
v0.1 will accept them, and the compromised Firedancer v0.1 instance will quickly switch to a valid
fork.

Note that most of the consequences above arise inherently from the functionality of the tiles. For
example, you have to trust verify to accurately verify signatures, as that is the explicit task.

Sandbox Secrets

Another interesting attack vector is secret exfiltration. There aren’t many secrets in play with Firedancer,
most notably the vote and identity key. So the only Firedancer tile which actively holds secrets worth
stealing is the sign tile, which is well-protected and has a minimal surface area.

However, the Agave runtime also needs access to the identity and vote keys. In turn, all tiles in the
Agave address space can leak the keys. In addition, the Agave tile isn’t really sandboxed, making it an
interesting target for comprehensive system exploits, such as stealing SSH credentials or traversing
the operator’s internal infrastructure to access other sensitive systems.

17 / 67

Security Audit – Firedancer v0.1

In theory, a competent operator might prevent this simply by the UID/GID sandbox, but more miti-
gations could be put in place regardless. Implementing light sandboxing techniques such as Linux
Landlock, as already used in newer Firedancer sandboxes, could help alleviate some of these issues.
While not as robust as the primary Firedancer sandboxes, this approach provides some level of mitiga-
tion.

18 / 67

Security Audit – Firedancer v0.1

7 | Exploit Paths
As seen above, RCE in different tiles/sandboxes has different impacts. Therefore, we must consider the
robustness of the interfaces between the tiles to assess if an attacker can traverse from one sandbox to
another. For this, we will examine the shared-memory interfaces between the tiles in more detail.

Shared Memory Between Tiles

Firedancer’s message-passing architecture relies on shared-memory mappings for each producer/-
consumer link. These mappings, called workspaces, are joined before the sandboxing of a process
is applied. Multiple data structures are placed in these regions, with the producer having read-write
access while consumers typically have read-only access to the links.

Fragments are sent over these links, each containing an 8-byte signature with link-defined meaning, a
sequence number, some other metadata, and optionally payload data.

Given Firedancer’s inherently multi-process architecture, there is potential for time-of-check to time-
of-use (TOCTOU) vulnerabilities if consumers are not careful. An attacker could send a message and
replace its content while the consumer is parsing it. Reading an entire message atomically is rarely
feasible.

Ideally, each tile would copy all data received from a link into memory exclusively controlled by that
tile before parsing or making decisions. However, this approach has performance implications, as each
tile would need to constantly copy all data.

To optimize performance, Firedancer does not always blindly memcpy all data before making decisions.
It often partially examines data for early rejections. This is acceptable if only rejections are performed,
but it increases the risk of introducing TOCTOU bugs.

These issues can occur maliciously or due to unreliable links that might be overrun. If a link’s producer
generates too many items for the consumer to keep up, the producer might overwrite an item the
consumer is handling. Firedancer addresses this by using a stream-multiplexer for each tile, which
provides three main packet parsing functions:

• before_frag: Called with the publisher ID, sequence number, and signature for each packet for
early filtering.

• during_frag: Called with payload data. It should copy all data to avoid overrun issues since data
might be overwritten at any time. This stage should not have problematic side effects.

• after_frag: Called when the fragment was not overrun during during_frag and should commit
everything.

19 / 67

https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/367.html

Security Audit – Firedancer v0.1

Additionally, there are periodic housekeeping functions. Full documentation is available in fd_mux.h.

Apart from overrun/malicious TOCTOU bugs, another type of bug can occur: overly trusting the data.
While some trust is necessary, such as trusting the verify tile to check signatures correctly, it is unwise
to assume the data provided is entirely safe. Lengths, pointers, or offsets transferred over links could
chain a bug into the consumer, potentially enabling an RCE-chain: exploiting QUIC, then Verify, and so
on.

We investigated how feasible TOCTOU like bugs are, and what data is trusted and checked over each
shared memory link. We detail our findings on this in the next sections.

20 / 67

https://github.com/firedancer-io/firedancer/blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/disco/mux/fd_mux.h

Security Audit – Firedancer v0.1

TOCTOU Investigation

We manually inspected the data accessed by each tile in before/during_frag to find time-of-check -
time-of-use (TOCTOU) bugs, which could be abused by an attacker racing the check.

Tile TOCTOU Vulnerable

net no

quic no

verify no

dedup no

pack no

bank no

poh Microblock trailer fully unchecked. In the microblocks received from bank, only transactions
are copied, not the trailer, which includes the bank index. This means the bank can change
header after any checks. This can be used with a later fseq_update to have an arbitrary
write-what-where primitive. In practice, both bank+poh tiles run in the same address space
anyways, so not a huge issue.(Finding: PoH trusts the microblock_trailer it got from pack too
much)

shred Always copies full entry, but not fd_entry_batch_meta_t for fragments arrinving from PoH.
The decision to finalize a batch is made by reading entry_meta->block_complete, before
copying it. This means you could create a batch that doesn’t actually have the
block_complete flag correct. Not a practical issue, as blocks are automatically completed
when the PENDING_BATCH_WMARK is reached, so following code has to handle this case
correctly anyways.

store no

sign no

During our investigation, we focused mainly on the source code and expected compiler behavior.
However, TOCTOU-like bugs can also be introduced by the compiler. If variables are not defined as
volatile, the compiler might assume the memory contents do not change and emit a double-fetch.
GCC has been known to do this in certain switch-case statements.

While we found no instances of this in Firedancer, our check was not exhaustive. Behavior may change
with different compiler versions and compile flags. An example of a large project affected by such a
bug is the The XEN Hypervisor. More information on this can be found in a Report by NCCGroup.

21 / 67

https://insinuator.net/2015/12/xen-xsa-155-double-fetches-in-paravirtualized-devices/
https://research.nccgroup.com/wp-content/uploads/2022/03/NCC_Group_Whitepaper_DoubleFetch2022_Report_2022-03-25_v1.0.pdf

Security Audit – Firedancer v0.1

To address these potential issues, we recommend a more structured approach: Write the code in a way
so it’s obvious where you do the copy, and then copy everything at once. Going through all these places
and checking behavior from code alone is feasible, but has to be done on each source modification
and pull-request again. Additionally, without very cautious measures like marking everything as
volatile, it is hard to always predict the compiler’s behaviour. This measure would likely have adverse
performance impact. Keeping early-abort checks is fine, as long as you re-check after the copy.

While this restructuring might have performance implications, it would be a defense-in-depth approach
to enhance security.

22 / 67

Security Audit – Firedancer v0.1

Inter-Tile Trust-Based Exploit Chains

In addition to potential TOCTOU vulnerabilities, there are risks associated with tiles overly trusting
parsed data from other tiles, especially when this data includes pointers, lengths, or offsets. Each of
these elements should be verified to be in-bounds before use.

We examined all links to identify where such data is transferred and trusted and found several instances
where this trust is violated.

Example: The pack-bank interface.

• The pack tile provides a raw pointer to the agave-bank to the bank tile.
• This pointer is fully unchecked and used as a ‘self’ pointer in Rust.
• This unchecked pointer creates a flexible exploit primitive, likely allowing an exploit to chain

from the Pack tile into the Agave address space.

Findings:

• PoH trusts the microblock_trailer it got from pack too much
• Bank pointers are unprotected
• Pack trusts verify tile for parsing transactions

Recommendations

There are some defense-in-depth measures Firedancer can take to improve security with inter-tile
transfers.

1. Never Trust Offsets, Lengths, or Pointers Shared Between Tiles:

• While tiles must trust the sender regarding the data’s accuracy, they should not trust it in ways
that can compromise memory safety.

• Each tile should validate any pointers, lengths, or offsets received from another tile.

2. Avoid Simultaneous Transfer of Raw Bytes and Parsed Representations:

• Ensure that Firedancer does not transfer both raw bytes and their parsed representation simulta-
neously unless all consumers re-run the parsing logic to verify the data’s correctness.

• Currently, this issue exists with transactions where both raw and parsed versions are transferred,
which do not necessarily match.

23 / 67

Security Audit – Firedancer v0.1

8 | Patches to Agave
Firedancer v0.1 integrates Firedancer and Agave code through a custom foreign-function interface
(FFI). This interface uses 32 custom functions for bi-directional communication. For example, Agave
defines functions that Firedancer v0.1 calls, such as fd_ext_blockstore_insert_shreds, used
by the shred tile to insert shreds into the Agave blockstore. Conversely, Firedancer defines functions
that Agave calls, such as fd_ext_poh_begin_leader, invoked by Agave’s replay stage to execute
transactions in a new bank.

The patch-set is surprisingly elegant, and small enough so that Firedancer v0.1 currently can keep
track with Agave development, by applying it on-top of the current Agave master. Each patch well
structured and single-purpose.

Interface Robustness

The interface’s robustness is crucial due to the different programming languages on both ends (C for
Firedancer and Rust for Agave). We found no major issues related to language constraints. However,
crash-resistance issues were identified, particularly concerning the use of unwrap or expect in Rust,
which can cause the entire validator to shut down if triggered. There are two places where is this an
issue:

One significant issue arises in the communication of stake weights. Firedancer imposes strict limits
on queue sizes, with a maximum of 40200 entries to fit into a single fragment on the link. However, it
is possible to have more than 40200 staked nodes, which would cause the unwrap on the Agave side
to panic and shut down Firedancer v0.1. While Agave might also struggle with such a high number of
staked nodes, it would not crash under the same conditions. (Finding: Stake weight sending has easy
to reach DoS by creating more than 40200 validators)

Another problem was found with gossip connection information. There is a discrepancy where Agave
sends a maximum of 40200 entries, while Firedancer panics if it receives more than 41999 entries.
This off-by-one error needs to be addressed to ensure consistent behavior between the two systems.
(Finding: Potential panic in fd_stake_ci_dest_add_fini)

There are other unwraps, but those are not reasonably triggerable. For example, the shred-insert might
fail, but that only happens when there are errors returned form the RocksDB, in which case there is no
clean recovery anyways.

24 / 67

Security Audit – Firedancer v0.1

Interactions During Leader Slots

We specifically considered interactions in between Agave and Firedancer in the case when the
Firedancer v0.1 node acts as leader and produces blocks. Below is a high-level overview of this
process.

In the background, Agave continuously replays all blocks. When the node becomes a leader, the
Agave replay stage constructs a bank and sends it via the custom Firedancer_PoH_Recorder to
the Firedancer PoH Tile. This PoH Tile then notifies the Pack Tile that the node is now the leader.
Consequently, the Pack Tile begins ingesting transactions from its queues, which are kept up-to-date
with new transactions at all times. The Pack Tile creates microblocks and sends them back to the
Agave bank through the Firedancer Bank Tiles.

Multiple Bank Tiles can be involved in this process, with the Pack Tile responsible for locking accounts.
After execution, the Bank Tiles forward the execution results to the PoH Tile, where a new tick is created.
During this time, the PoH Tile ensures that ticks are progressing smoothly.

Once a slot is completed, the Pack Tile notifies the PoH Tile that packing is finished. The PoH Tile then
waits until it has received all the microblocks currently in transit before finalizing the slot. As the unlock
of accounts only happens in PoH, the insertion order of execution results into PoH is guaranteed to be
consistent with the order they were applied to the bank.

25 / 67

AGAVE Banks Firedancer PoH

becomes leader.
Create new leader bank

Firedancer_PoH_Recorder::set_bank()
leader bank arc ptr*

PoH::fd_ext_poh_begin_leader
lock PoH

unlock PoH

Firedancer Pack

POH_PKT_TYPE_BECAME_LEADER
(incl: leader-bank-ptr)

AGAVE Replay

replay transactions in a loop

maybe_start_leader()

Firedancer Banks

pack microblock

microblock + bank_ptr

book-keeping: Timed-out leader-slot

POH_PKT_TYPE_DONE_PACKING

Hash Executed Transactions
mix TXs + hash tick

into PoH

Firedancer Shred

Round robin on ID that pack chose

check if new bank is idle & schedule microblock

convert microblock into Agave memory format
get pre_balance_info

load and execute TXs

execution result

Agave MISC

commit transaction + results to bank arc ptr
commit

minor commit housekeeping

microblock / empty-tick
create shred, FEC

publish to net

mark bank as idle

mark bank as busy

DONT LOCK ACCOUNTS! (fake it)
create new batch
bank.load_and_execute_transactions()
Gather results

register_tick

keep hashing, until we receive the exact number of microblocks promised

keep room to always accept max number of microblocks

updates expected number of uBlocks

Security Audit – Firedancer v0.1

9 | Tile Evaluation
In this section, we investigate the more interesting functionality of various tiles within Firedancer v0.1.
While all tiles were audited, this section highlights where we found noteworthy observations.

Additionally, we evaluated potential discrepancies in behavior between Agave and Firedancer, particu-
larly in networking and consensus-related aspects. (Also see the previous Section on Recommendation
for Agave Compatibility). Our findings for each tile are detailed below.

Sign Tile and Cryptography Evaluation

Sign Tile

There are various parts in Firedancer v0.1 that need access to sensitive key material to sign messages.
Firedancer wraps this into a single Sign Tile. All other components that require signing capabilities
interact with this tile via a memory mapped queue. In the Solana protocol, there is an identity key.
This signing key is employed for a multitude of message formats. These formats include such things as
shreds, quic and gossip. A signing domain encompasses at least one message format. Since the Sign Tile
receives messages to be signed via a queue, ideally, these domains would be strictly distinguishable.
Unfortunately, they are not. However, Firedancer provides a CMBC proof which guarantees that
domains can be distinguished by parsing messages within the Sign Tile and checking for certain
constraints.

Even though the Sign Tile uses this, right now only two domains are implemented:

• FD_KEYGUARD_ROLE_LEADER
• FD_KEYGUARD_ROLE_TLS

These domains are used for signing shreds and quic/TLS handshake hashes respectively. Those two
are trivial to distinguish, based on message size alone.

Cryptographic Primitives

Three components, namely keccak256, Sha512 and Ed25519 were investigated in more detail.

Hash Functions

The Keccak256 and Sha512 implementations were checked for completeness and correctness. Espe-
cially the round constants, state transistions and absence of XKCP-like buffer overflows were checked.

27 / 67

https://mouha.be/sha-3-buffer-overflow/

Security Audit – Firedancer v0.1

Ed25519

For Ed25519 in particular, it should under no circumstances be possible to leak the key from the Sign
Tile. Assuming an RCE attacker that gains code execution within another tile, timing attacks become a
serious threat.

As this is such a relevant factor, the implementation was checked manually and machine guided for
constant timeness. TheTIMECOP tool, a patchset forValgrindwas used to identify private information
that is used in branching or lookups. No such information was found. TimeCop found a variable-time
path in the signature verification, which is unproblematic, as verification only uses publicly known
values. The code was also checked for code paths that could result in the compiler including variable-
time code, such as divisions.

The behaviour of various special input values, including the identity, invalid/low order points was
investigated. Due to checks in the code, but also the robustness of the underlying primitive, no poor
behaviour or DOS-vectors were identified. To identify possible signature verification bypasses, the
code was checked for early returns, otherwise faulty code paths or incorrect arithmetic. None were
identified. As certain checks are omitted, signatures verified in Firedancer are malleable. However, as
non-malleability is not required by the employed protocols, this does not pose a threat to security as
of this moment. Source code comments also hint to the fact that Firedancer’s developers are aware of
this property.

Firedancer’s ed25519 implementation is tested against the Wycheproof set of test vectors, which
already checks for many common attacks. This helps to foster confidence into the correctness of the
implementation. As the ed25519 sign function takes the pubkey and private key separately, without an
inherent check of public key correspondence, the private key could be leaked if it were combined with
a faulty public key. However, the Sign Tile has an explicit check that this is not the case when loading a
key from disk.

In Firedancer v0.1, the key is not only stored in the Sign Tile, but also in the Agave validator. Agave
requires it to, for example, sign gossip messages. As much of the current functionality is still imple-
mented in Agave and the in-address-space running Firedancer tiles, many components have access to
the key without communicating with the sign tile. However, the design of the sign tile itself is sound,
and once the signing capabilities of Agave are no longer required, the key will be well protected.

28 / 67

https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/app/fdctl/run/tiles/fd_sign.c#L162-L165

Security Audit – Firedancer v0.1

Quic Tile

As the Quic Tile is one of the primary externally rechable entry points into the Firedancer v0.1 validator,
it was investigated in-depth. QUIC is a general-purpose network protocol for, initially designed by
Google. It allows for easy connection multiplexing, and is built on UDP. Its most common application is
in HTTP/3.

Solana leverages QUIC for its core transaction ingress, allowing the use of existing DoS mitigation
solutions to protect transaction ingress before traffic reaches the validator node. However, QUIC is a
complex protocol and offers guarantees that are not essential for Solana transactions. For instance, all
QUIC connections must be TLS1.3 encrypted, making connection establishment relatively expensive
due to the cryptographic handshake involved. This handshake includes a signature from the identity
key, which is used to authenticate staked nodes when communicating within Agave. This mechanism
enables Stake-Weighted Quality of Service (SWQOS), ensuring that high-stake nodes are guaranteed
connections, while clients without stake may not receive any bandwidth allocation, preventing them
from submitting transactions during high-load conditions.

Firedancer’s QUIC implementation demonstrates significant care and polish. Our review identified few
instances where QUIC did not meet specifications, and no memory corruption or overflow issues were
found.

Dynamic testing, particularly of the costly connection initiation, revealed a bug in handling invalid
handshakes, causing a validator to respond with an excessive number of acknowledgments in a single
connection. (Finding: QUIC tile DoS with INITIAL and CONNECTION CLOSE frames)

There are concerns about slow-loris attacks, where an attacker opens many connections to block
others, keeping them alive via periodic pings. Firedancer v0.1 currently lacks protections against such
DoS attacks, with no connection limiting based on IP and no SWQOS.

In our test setup, a single QUIC tile handled approximately 270Mbit/s of traffic consisting mostly of
costly crypto handshakes, while using 100% of a CPU core.

As examined above, QUIC unresponsiveness likely only lead to production of vote-only blocks. This
could be a practical issue if numerous bots attempt to spam transactions from multiple IPs. Although
old connections remain open until they timeout, validators are likely to receive forwarded transactions
from other validators that connect early.

This mechanism is vulnerable to gaming, where bots aware of Firedancer’s behavior could implement
strategies to ensure their transaction inclusion, highlighting the need for robust protections against
slow-loris attacks.

29 / 67

Security Audit – Firedancer v0.1

Pack Tile

During their leader slots, a Solana validator is resposible for building new blocks. The leader incen-
tivized to select those transactions that maximize his block rewards while staying under the block size
and cost limits. Firedancer convieniently summarizes these limits in the fd_pack_limits struct:

1 struct fd_pack_limits {
2 ulong max_cost_per_block; /* in [0, ULONG_MAX) */
3 ulong max_vote_cost_per_block; /* in [0, max_cost_per_block] */
4 ulong max_write_cost_per_acct; /* in [0, max_cost_per_block] */
5 ulong max_data_bytes_per_block; /* in [0, ULONG_MAX - 183] */
6 ulong max_txn_per_microblock; /* in [0, 16777216] */
7 ulong max_microblocks_per_block; /* in [0, 1e12) */
8 };

• max_cost_per_block: limits the cost of the blocks transactions
• max_vote_cost_per_block: limits the cost of vote transactions
• max_write_cost_per_acct: limits the cost of transactions write to a single account
• max_data_bytes_per_block: limit the size of the block
• max_txn_per_microblock: limits the size of each microblock
• max_microblocks_per_block: limits the number of microblocks per block

It is crucial that these limits are at least as strict as the limits Agave imposes on incoming blocks, as
otherwise the block generated by Firedancer will get rejected by the network. The pack tile ingests
transactions from the dedup and gossip tile and is connected to the PoH tile to get notifed when
the leader slot starts. Finished blocks get published to one or more banking tiles where they will get
executed. For more about this flow, check out the section on Interactions When Leader.

Transaction scheduling

The pack tile schedules transactions one microblock at a time. A microblock is a set of transactions
with no write conflicts. Each Microblock has a CU limit 1.5M, 75% percent of which are allocated for
vote transactions unless the vote cost limit of the entire block has been reached.

Firedancer always tries to schedule the transaction with the highest reward to cost ratio first. The
rewards are proportional the fee per signature and the priority fee while costs are calculated based on
Agave cost model.

Microblock scheduling is divided into three phases:

Phase 1: Primary transaction scheduling

Schedule transactions until the space allocated for vote transactions is reached.

30 / 67

https://github.com/solana-labs/solana/blob/9fb105c801e2999a24f0773443d6164e30c9ff0c/runtime/src/block_cost_limits.rs

Security Audit – Firedancer v0.1

Phase 2: Vote transaction scheduling

Schedule vote transactions until the space allocated for vote transaction is filled.

Phase 3: Secondary transaction scheduling

Schedule transactions until the microblock is full.

Transaction spam

To reduce latency, transactions are scheduled and executed as soon as possible. This reduces the
effectiveness of the prioritisation mechanism as transactions arriving later can’t get reordered before
transactions that are already scheduled, even if they have a higher priority. Therefore spamming
transactions to get them executing as soon as possible is incentivised with the current scheduler.

Invalid and Expired Transactions

In addition, the current design has a significant issue with transactions have a valid signature, but are
not executable.

Each transaction includes a block-hash responsible for its timeliness. This block-hash must reference
one of the past 150 slots (approximately one minute); after that, transactions expire and become invalid.
There are also durable-nonce transactions, that include a ‘fake’ blockhash stored in an account on the
blockchain. When executing, this blockhash is checked against the durable-nonce-account state, and
the transaction is rejected if it is invalid.

Another common reason for transaction rejection is an insufficient fee-payer balance. Each transaction
on Solana requires a minimum fee of 5000 Lamports. If the fee-payer’s balance is insufficient, the
transaction is rejected by the runtime.

To summarize, the three likely vectors to reject transactions are:

• Insufficient fee-payer balance.
• Invalid block-hash:

– For normal transactions: the blockhash is not in the last 150 blocks.
– For durable-nonce transactions: the blockhash does not match the one in the durable-

nonce-account.

Currently, Firedancer v0.1 has no mitigations against these vectors. An attacker can spam transactions
with a high reward-to-cost ratio, filling up block space, for free. By specifying victim accounts as writable
in these transactions, they can also effectively create a denial-of-service on single accounts.

31 / 67

Security Audit – Firedancer v0.1

There is an outlined architecture for fee-payer balance checks, but it always returns true: fee payer
balance checks.

Addressing Invalid Transactions

The current situation is understandable, as it is quite tricky to solve. To mitigate transaction spam,
it is essential to know past block-hashes, manage fee-payer balances, and handle durable-nonce
transactions correctly.

Agave replay could notify on all blockhashes, with Pack storing the past 150 to ensure validity, maybe
switching on fork changes. However, handling invalid or empty fee-payer accounts and durable-nonce
transactions requires recent bank access, which is challenging due to the separation of Pack and the
bank in different processes.

Currently, Pack has no way to communicate with the bank, which runs in a separate process and
address space. One solution could be promoting Pack into the Agave address space, though this would
weaken the sandboxing. Another solution is to introduce a ‘check’ tile in the Agave space that verifies
transaction validity against the current working bank before they reach Pack. A third solution, theorized
by Firedancer, would be to implement a bloom-filter on valid accounts, and pass that on to pack.

Discussions with Firedancer developers revealed they are working on a holistic approach that considers
the frequency of invalid transactions from senders and limits their access to block space. One idea
could be to reserve block space for ‘trusted’ senders while penalizing untrusted ones. The exact design
of this is still pending, and will have to be evaluated against robustness while it’s done. This general
approach to make transaction rejection cheap while penalizing those who submit invalid transactions
is good.

Comparison to Agave

Agave’s scheduler, while also fairly naive, has direct access to the bank, allowing it to avoid unnecessarily
locking accounts for extended periods. This is largely done in check_age, a function on the bank itself,
that even loads nonce-accounts without lock if required.

Unlike Agave, Firedancer’s Pack implementation cannot currently include Address-Lookup-
Transactions (ALT). This limitation mainly results in the censorship of ALT transactions from all
Firedancer v0.1 blocks. However, the replay stage, fully provided by Agave, can correctly handle ALT
transactions packed into blocks by other leaders.

32 / 67

https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/ballet/pack/fd_pack.c#L615-L627
https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/ballet/pack/fd_pack.c#L615-L627
https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/solana/runtime/src/bank.rs#L4569-L4569

Security Audit – Firedancer v0.1

Shred Tile

In Solana, blocks are transferred between validators using a custom protocol. Each block is divided
into many fragments, called shreds. Multiple shreds are grouped into Forward Error Correction (FEC)
sets, which also contain ‘coding’ shreds. These coding shreds use Reed-Solomon erasure coding to
ensure resistance to packet loss without needing retransmission. This is critical as each slot is only
400ms long, and validators must replay the previous slot to build a new one, leaving little time for
retransmission.

Each shred is self-contained, with its own header and signature. The Shred Tile has two main responsi-
bilities:

1. Creating FEC Sets: The Shred Tile receives transaction batches from the PoH Tile and creates
FEC sets, including generating the coding shreds. These shreds are then sent out via the Net Tile.

2. Reassembly of Incoming Shreds: The Shred Tile handles the reassembly of incoming shreds
from the network. It buffers incoming shreds until enough are received and then uses Reed-
Solomon erasure recovery to reconstruct any missing ones. All received shreds are inserted into
the Agave blockstore, from which Agave replay picks them up.

There are different types of shreds as the Solana network has evolved its shred protocol over time:

• Legacy Shreds: These are no longer accepted by Agave.
• Merkle Shreds: Currently in use.
• Chained-Merkle Shreds: A new development not yet in use by the network.

Issues Identified

During our investigation, we found several issues with how Firedancer accepts and rejects shreds:

1. FEC Set Size Limitation: Firedancer limits the number of shreds in a single FEC set to 67 data
shreds and 67 coding shreds. While this matches the maximum size an unmodified Agave client
will send, Agave itself can accept larger FEC sets. This limitation means that Firedancer nodes
might not accept slots that the rest of the network builds consensus on. However, this issue is
mitigated by Agave replay, which can handle any FEC set that Agave can handle, as the replay
ingress path remains the original Agave code. (Finding: Firedancer v0.1’s limit for number of
shreds in a FEC-set is lower than Agave)

2. Acceptance of Legacy Shreds: Firedancer’s acceptance criteria for legacy shreds are too lax.
Since Agave no longer accepts legacy shreds, accepting them could temporarily put Firedancer
v0.1 on the wrong side of consensus. (Finding: Firedancer does not handle legacy shreds cor-
rectly)

33 / 67

Security Audit – Firedancer v0.1

3. Acceptance of mismatching Shreds: Firedancer doesn’t sufficiently check that the parameters
of incoming shreds are correct and match in-between all shreds. This could cause Firedancer to
accept shreds that Agave rejects (Finding: Firedancer does not check shred version)

In general, it is crucial for Firedancer to make the same acceptance and rejection decisions as Agave.
As the code responsible for this is distributed over different components of the Agave codebase, this
isn’t trivial to achieve. Implementing a fuzzer could help identify discrepancies and ensure consis-
tent behavior between Firedancer and Agave. This consistency will become even more critical with
increasing stake and the planned removal of the Agave repair path.

34 / 67

Security Audit – Firedancer v0.1

10 | Datastructures
Firedancer comes with its own library of data structures, most of which are heavily optimized for
performance. These optimizations often rely on guarantees that the caller must provide, which is quite
different from the typical design of non-high-performance data structures.

We started a systematic evaluation of all datastructures, but quickly found that to be inefficient, largely
due to the lack of internal checks. Instead, we focused on concrete users and tiles.

Caller Guarantees

To illustrate how security of the data structures depend on their usage, consider Firedancer’s hashmap
implementation. In it the null key is used to indicate that no entry is present. This means that the
constructor of the hashmap must ensure it does not store entries with an all-zero hash, as they might
not be retrievable. Similar expectations apply to other data structures, where the caller is responsible
for not inputting ‘weird’ values, avoiding the deletion of non-existent elements, and so forth. This
design places the burden of security on the callers, making it challenging to evaluate or fuzz the data
structures independently.

Hashing and Performance

A significant concern with Firedancer’s sets and maps is the lack of randomization in the hashing
functions. Typically, hashmaps handle collisions by falling back to a linear list within each hash bucket.
If an attacker can predict the hash bucket into which a value will be sorted, they can severely impact the
performance of the hashset, as linked-list operations degrade from O(1) to potentially O(n). (Finding:
Hashmaps are vulnerable to HashDoS attacks)

Recommendation

We recommend to make the security-constraints of all data structures very explicit. Add comments what
invariants have to be conserved by the caller, specifically to maintain security. That way, developers
can quickly double-check that what they are implementing follows the requirements.

35 / 67

Security Audit – Firedancer v0.1

11 | Findings
This section outlines all of our findings. They are classified into one of five severity levels – critical,
high, medium, low, informational – detailed in Appendix D.

All findings are listed in Table 3 and further described in the following sections.

Table 3: Findings

Identifier Name Severity

ND-FD1-MD-01 Hashmaps are vulnerable to HashDoS attacks Medium

ND-FD1-HI-01 QUIC tile DoS with INITIAL and CONNECTION CLOSE frames High

ND-FD1-MD-02 QUIC vulnerable to a low bandwith DoS Medium

ND-FD1-MD-03 Quic implementation vulnerable to slowloris attacks Medium

ND-FD1-LO-01 Risk of Sign-Tile Exhaustion Low

ND-FD1-HI-02 Stake weight sending has easy to reach DoS by creating more
than 40200 validators

High

ND-FD1-MD-04 Potential panic in fd_stake_ci_dest_add_fini Medium

ND-FD1-MD-05 Firedancer v0.1’s limit for number of shreds in a FEC-set is lower
than Agave

Medium

ND-FD1-LO-02 Firedancer does not check shred version Low

ND-FD1-LO-03 Firedancer does not check for consistency between code and
data shreds

Low

ND-FD1-MD-06 Firedancer does not handle legacy shreds correctly Medium

ND-FD1-NI-01 QUIC Nitpicks Nitpick

ND-FD1-LO-04 PoH trusts the microblock_trailer it got from pack too much Low

ND-FD1-LO-05 Bank pointers are unprotected Low

ND-FD1-LO-06 Pack trusts verify tile for parsing transactions Low

ND-FD1-IN-01 Agave joins shred_store workspace as RW, could be RO Informational

36 / 67

Security Audit – Firedancer v0.1

[ND-FD1-MD-01]Hashmaps are vulnerable to HashDoS attacks

Severity Impact Affected Component Status

Medium Attacker can cause tiles to become
unresponsive, especially Dedup

Datastructures Acknowledged

Firedancer does not use randomized hash functions (or none at all for the dedup stage) in its hashmaps.
Attackers can abuse this to degrade the performance of the hashmaps from O(1) to O(n) and potentially
cause a denial of service.

Details

The hashmap implementation used in fd_tcache.h is based on linear probing. The tag used by
fd_dedup.h is just the first 64 bits of a transactions signature [1] and therefore is fully controlled by an
attacker who can send many transactions with colliding tags and create a long sequence of filled slots.
Trying to access an element which hashes to the first slot in the sequence will be very slow as it has to
iterate through the entire sequence to find an empty slot.

Suggested Fix

Use a randomized hash function.

Notes

Pretty much everything used to be vulnerable to this so you can find a lot of information on similar
attacks (with linear probing its much easier than with chaining hashmaps since you don’t need exact
collisions):

• Paper: Denial of Service via Algorithmic Complexity Attacks
• Talk: Efficient Denial of Service Attacks on Web Application Platforms

There is another small issue in fd_dedup.h if the first 64 bits of the signature are 0. (which is very
unlikely since the signature has to be valid) This will cause the transaction to either always be filtered
if the first slot is empty (since it will already contain 0) or never be filtered.

Firedancer also uses other randomized datastructure, for example treaps, which may also be suscepti-
ble to similar attacks if they are not properly randomized and exposed to an remote attacker.

37 / 67

https://github.com/firedancer-io/firedancer/blob/283b23aa44c6bba1d39893b9ee0ea65a5a4dd2c8/src/tango/tcache/fd_tcache.h#L281
https://github.com/firedancer-io/firedancer/blob/283b23aa44c6bba1d39893b9ee0ea65a5a4dd2c8/src/app/fdctl/run/tiles/fd_dedup.c#L125
https://github.com/firedancer-io/firedancer/blob/283b23aa44c6bba1d39893b9ee0ea65a5a4dd2c8/src/app/fdctl/run/tiles/fd_verify.h#L65
https://www.usenix.org/legacy/events/sec03/tech/full_papers/crosby/crosby.pdf
https://fahrplan.events.ccc.de/congress/2011/Fahrplan/attachments/2007_28C3_Effective_DoS_on_web_application_platforms.pdf

Security Audit – Firedancer v0.1

Another issue with linear probing is that even with randomization high load factors can cause perfor-
mance to drop very quicky. fd_tcache.h deals with this by removing old entries after a threshold.

Resolution

Firedancer is aware of this issue and plans to mitigate it by per-validator random-seeding of hashmaps.
This is a good solution.

38 / 67

Security Audit – Firedancer v0.1

[ND-FD1-HI-01]QUIC tile DoS with INITIAL and CONNECTION CLOSE
frames

Severity Impact Affected Component Status

High Validator doesn’t accept transactions,
potential for amplification attack

QUIC Resolved

When using a CONNECTION CLOSE frame in a INITIAL packet, the server answers with ~2500 ACK
packets. This can be abused to create a DoS with ~500 client packets/s, or to create an amplification
attack when retry = false.

Commit: 30fb51e2634d8ca80de34e497169bf8a0f6183a7 (quic - fixed RETRY)

Details

QUIC packets can contain multiple FRAMES with data (like CRYPTO, PING, ACK, STREAM, . . .) encapsu-
lated into these frames. In a normal connection establish behaviour, the INITIAL packet consists of
the CRYPTO frame and a PADDING frame.

When modifing the INITIAL packet to consist of a CRYPTO frame, as well as a CONNECTION CLOSE
frame, we can observe very high load on the quic tile. Around 500 packets/s (~ 5 MBit/s) of these
packets are enough to fully exhaust the quic tile.

Figure 2: Wireshark

39 / 67

Security Audit – Firedancer v0.1

Figure 3: Tile Utilization

Figure 4: Flamegraph

The reason for the resource exhaustion stems from a lot (~2500) of QUICACKpackets that are responsed
to the initial sender. 500 INITIAL packets/s (~ 5MBit/s) generate around 570 MBit/s of traffic to the
sender. In case of retry = false, this attack can be used as amplification attack against other IP
addresses with an amplification factor of ~50x.

The root cause for this behaviour is currently unknown. Something in the connection-handling state
machine in fd_quic_service breaks.

Suggested fixes

Investigate why the combination of INITIAL and CONNECTION CLOSE generates that many ACK
packets.

40 / 67

Security Audit – Firedancer v0.1

Reproduction

For brevity, the full reproduction scripts aren’t included in this report.

Resolution

Firedancer fixes this with PR#2013. Neodyme has confirmed the issues doen’t occur on the latest code
anymore.

41 / 67

https://github.com/firedancer-io/firedancer/pull/2013

Security Audit – Firedancer v0.1

[ND-FD1-MD-02]QUIC vulnerable to a low bandwith DoS

Severity Impact Affected Component Status

Medium Validator doesn’t accept transactions QUIC Acknowledged

Firedancer’s Quick interface is vulnerable to a low-bandwidth denial of service attack.

Commit: 30fb51e2634d8ca80de34e497169bf8a0f6183a7 (quic - fixed RETRY)

Details

To further investigate the bahaviour of the FD validator and its robustness to QUIC spam, we reduced
the max_idle_timeout to 100ms. Otherwise we would’ve run always in the “slowloris”/connection
exhaustion finding above.

With those settings, we could estimate how resource expensive serveral operations of the FD QUIC
stack are.

Case: Retry = true (Amplification protection)

In the retry = true case, a full handshake looks like:

1 Client: INITIAL
2 Server: RETRY (provides Token)
3 Client: INITIAL (with Token)
4 Server: TLS Flow => x25519 => expensive

The TLS flow is quite expensive computation wise. A “low bandwith” (~10k pakets/s, 100 MBits/s) DoS
with the above timeout settings is enough to bring down a single quic tile. Note that we did not send
any close packets, and relied purely on the timeout to close old connections.

42 / 67

Security Audit – Firedancer v0.1

Figure 5: Tile Utilization

This DoS Also causes the sign tile to take around 20% of load, because it signs the TLS certificate for
each connection.

Figure 6: Flamegraph

43 / 67

Security Audit – Firedancer v0.1

Case: Retry = false

In the retry = false case,the “handshake” is reduced to:

1 Client: INITIAL
2 Server: TLS Flow => x25519 => expensive

Each INITIAL packet causes a sign interaction. around 50MBit/s (~5k pakets/s) bring down the quic
tile

Figure 7: Tile Utilization

This DoS also causes the sign tile to take around 20% of load.

Suggested Fix

As an ‘easy’ fix we recommend using the ‘retry’ ip-validation and limiting the maximum number of
concurrent connections per IP. In some cases it may be sufficient to allow only one connection per

44 / 67

Security Audit – Firedancer v0.1

IP at a time. We also recommend restricting the number of connections that can be established per
second per IP.

Remediation

Firedancer is aware of this issue, and is already tracking it as Issue#1376: Ensure QUIC can survive DoS
(QoS/credit management)

With the newest changes, the QUIC tile can handle around 270Mbit/s of crafted packets.

45 / 67

https://github.com/firedancer-io/firedancer/issues/1376
https://github.com/firedancer-io/firedancer/issues/1376

Security Audit – Firedancer v0.1

[ND-FD1-MD-03] Quic implementation vulnerable to slowloris at-
tacks

Severity Impact Affected Component Status

Medium Validator doesn’t accept transactions QUIC Acknowledged

Firedancers quic implementation does not deploy any mitigations to slowloris attacks. As the maximum
number of concurrent connections is limited, attackers could claim all available connections and keep
them open to prevent other clients from connecting.

Commit: 30fb51e2634d8ca80de34e497169bf8a0f6183a7 (quic - fixed RETRY)

Details

By default, firedancer uses the following configuration regarding quic connections:

1 idle_timeout_millis = 10000
2 max_concurrent_connections = 2048

Given these values, an attacker can keep a connection open by sending just one packet every 10
seconds. Therefore, an attacker could keep 2048 connections open by sending less than 300 packets
per second.

This, however, does not affect connections that have already been established. It might be possible
to cause already established connections to timeout short-volumetric DoS attacks, but we haven’t
investigated that closer.

Potential Fix

As stated in section 21.6 of RFC9000, QUIC itself does not define any mitigations for Slowloris attacks
but proviedes some potential mitigations. However, the provided mitigations might not be applicable
in this particular case.

A passable solution is implemented by the agave client: Agave allocates quic connections based on
stake-weights of peers. If all connections are allocated, existing connections are dropped based on
stake weights whenever new connections are required.

46 / 67

https://github.com/anza-xyz/agave/blob/20ee70cd1829cd414d09040460defecf9792a370/streamer/src/nonblocking/quic.rs#L556-L606

Security Audit – Firedancer v0.1

[ND-FD1-LO-01] Risk of Sign-Tile Exhaustion

Severity Impact Affected Component Status

Low Firedancer v0.1 can’t produce blocks Sign Invalid

NOTE: This finding was found to be invalid, due to how the link-mux round-robins all connections.

Using a single sign tile for all crypto operations increases the risk of a validator DoS, e.g. if the sign
tile is exhausted by a QUIC DoS.

Commit: 30fb51e2634d8ca80de34e497169bf8a0f6183a7 (quic - fixed RETRY)

Details

By design, there is only one sign tile per server. This single sing tile handles QUIC certificate signing, as
well as all other keyguard operations.

In the worst case an resource exhaustion attack on the quic tile can bring down the signer tile and
with it all other operations needed for the validator to run.

Depending on the exact commit, and if retry is enabled, we’ve seen different amount of possible
sign-tile utilization, the newest version tested had ~20% sign utilization with a single quic tile doing
100% new connection handling. But the exact percentages could be ‘optimized’ and depend on the
hardware.

We currently estimate that it would be possible to exhaust the sign tile with around 3-4 QUIC tiles, but
haven’t tested that yet.

Originally suggested fixes

To increase resiliency, we recommend using a dedicated quic-sign tile only responsible for the quic
certificate signing operations. It is fairly easy to reach externally, and has the possiblity to stall later
tiles on their signing operations.

Another aproach might be to introduce a priority queue to the sign tile, so ‘validator-triggered’ sign
operations are always handled first.

47 / 67

Security Audit – Firedancer v0.1

Observation

The mux used to ingress signing-requests into the QUIC tile evenly consumes from all producers. No
single producer can thus block other tiles by having a long queue. Workload is still shared, but this is
essentially an implementation of the separate queue mechanism, so we don’t expect practical issues
to occur here, except for slightly increased singning latency.

48 / 67

Security Audit – Firedancer v0.1

[ND-FD1-HI-02] Stake weight sending has easy to reach DoS by creat-
ing more than 40200 validators

Severity Impact Affected Component Status

High Firedancer v0.1 Crash Agave-FFI Fixed

Due to memory constraints, Firedancer currently limits the maximum number of stake/vote
account weights to send to the stake link via fd_ext_poh_publish_leader_schedule to 40200
(FIREDANCER_STAKE_WEIGHT_CNT):

1 if stakes.len() > FIREDANCER_STAKE_WEIGHT_CNT as usize {
2 panic!("unable to communicate leader schedule to Firedancer,

too many stake weights");
3 }

Source

This condition can be triggered fairly easily from any network participant, making all firedancer nodes
panic on epoch-boundary.

Details

The sent stake amounts are taken from bank.epoch_staked_nodes(epoch):

1 /// staked nodes on epoch boundaries, saved off when a bank.slot()
is at

2 /// a leader schedule calculation boundary
3 epoch_stakes: HashMap<Epoch, EpochStakes>,

This in turn is usually computed via update_epoch_stakes: Source

For the leader-schedule computation, a weighted random draw over all staked nodes is taken, there is
no minimum delegation amount. The epoch_stakes thus necessarily include all staked nodes.

An attacker could thus simply create tons of new vote-accounts, create stake accounts to delegate some
funds to each, and wait for an epoch-boundary. The updated stake weights will be sent to firedancer,
panicing the validator.

This attack is fairly cheap and quick: Each vote-account costs 0.0270744 SOL in rent, each stake account
0.00228288 SOL plus the staked amount. Solanamainnet does NOT have the minimum stake feature
activated yet (which would enforce a 1 SOL minimum delgation).

49 / 67

https://github.com/firedancer-io/solana/blob/f112068fc76fee5d14f5fa815c8b07e4f07fc566/ledger/src/leader_schedule_cache.rs#L295
https://github.com/firedancer-io/solana/blob/f112068fc76fee5d14f5fa815c8b07e4f07fc566/runtime/src/bank.rs#L2363

Security Audit – Firedancer v0.1

You could thus stake the minimum amount of 1 lamport, and have a cost of less than 0.03 SOL/staked
node, or an equivalent of <5$.

Inactive vote accounts (vote accounts that haven’t voted since at least a full epoch), can be fully closed,
refunding all rent. Same for stake accounts. (eg vote_state/mod.rs).

This means fully exhausting 40200 staked nodes temporarily locks around 200k$ in rent. You can create
at least one such pair per transaction, likely many more. Landing 40k (non-conflicting!) TXs can be
done in well under an hour, depending on network congestion.

Agave does not impose any limit on the number of staked nodes. It likely won’t be too happy with so
many staked nodes either, especially around epoch-boundaries, but should be able to handle it. (If
not, that’d be an easy DoS vector for agave as well).

Since the leader-schedule is computed from a weighted sample of all nodes, you can’t simply ignore
low-staked nodes in your transfer to firedancer, but have to build another solution that allows FD
to handle arbitrarily many staked notes, at least for the leader-schedule computation. Or you do
that on the Agave side, and send the completed leader-schedule together with nodes with significant
stake-weight for turbine.

Cluster Connection Infos

A similar theoretical problem exists in the transferral of cluster connection information from agave to
FD, but there it is NOT a practical issue. Cluster connection info is transmitted every 5s from agave to
firedancer.

This happens via fd_ext_poh_publish_cluster_info, via firedancer_send_cluster_nodes
. That also hard-caps the number of items to 40200, printing a warning when it goes over, but not
panicing. Instead, it takes the ‘first’ 40200 nodes: peers.iter().enumerate().take(len):

1 let len = usize::min(Self::FIREDANCER_CLUSTER_NODE_CNT as usize
, peers.len());

2 //...
3 for (i, node) in peers.iter().enumerate().take(len) {

cluster_info.rs

Ultimately, this iterates over all cluster info’s known to gossip: crds.rs.

This in turn uses the nodes index set, which perserves insertion order. So even if very many new cluster
info packets were to be spammed, those new ones would be dropped in the firedancer transfer. There
are some intricacies on removing nodes from the list, which uses swap_remove, but this isn’t an attack
vector either, because Agave does periodic cleanup to limit the number of possible infos to around
8192 (CRDS_UNIQUE_PUBKEY_CAPACITY). Infos are pruned based on stake-weight, so spammy infos

50 / 67

https://github.com/firedancer-io/solana/blob/f112068fc76fee5d14f5fa815c8b07e4f07fc566/programs/vote/src/vote_state/mod.rs#L996
https://github.com/firedancer-io/solana/blob/f112068fc76fee5d14f5fa815c8b07e4f07fc566/gossip/src/cluster_info.rs#L2641
https://github.com/firedancer-io/solana/blob/f112068fc76fee5d14f5fa815c8b07e4f07fc566/gossip/src/crds.rs#L348

Security Audit – Firedancer v0.1

will get removed first. The limit is burstable to higher than 8192, but we find it highly unlikely that this
could cause issues. cluster_info.rs

Fix

Firedancer impemented a fix for this issue in PR#2307. This works around the issue, by sending only
the most-staked 40k nodes, and how many stake the remaining nodes have. By lucky happenstance,
the hashing involved in computing the leader-schedule and trubine-fanout is largely compatible this
this, and a leader schedule can still be computed even with missing information. Some turbine fanouts
might get missed, but this isn’t a big issue, as it is not expected for the network to grow this large
anytime soon, and this isn’t a valid attack vector for malicious actors anymore.

51 / 67

https://github.com/firedancer-io/solana/blob/f112068fc76fee5d14f5fa815c8b07e4f07fc566/gossip/src/cluster_info.rs#L2467
https://github.com/firedancer-io/firedancer/pull/2307

Security Audit – Firedancer v0.1

[ND-FD1-MD-04]Potential panic infd_stake_ci_dest_add_fini

Severity Impact Affected Component Status

Medium Firedancer v0.1 Crash Shred Fixed

When parsing gossip contact information, Firedancer always adds itself first.

1. Agave gathers up to 40200 contact infos from gossip, and sends them to FD
2. FD checks if there are less than 40200 entries, and then adds itself
3. FD updates epoch stake destinations

The concrete issue is a panic if Agave sends exactly 40200 infos, leading to a panic in this check:

1 fd_stake_ci_dest_add_fini(fd_stake_ci_t * info,
2 ulong cnt) {
3 /* The Rust side uses tvu_peers which excludes the local validator.
4 Add the local validator back. */
5 FD_TEST(cnt<MAX_SHRED_DESTS);
6 ...

Source

To fix this, let Agave send a maximum of 40200-1 infos in firedancer_send_cluster_nodes

Actually exploiting this in practice is likely very annoying, since Agave periodically prunes the contact
map to ~8k connections.

Fix

This is fixed in PR#2307, by simple sending at maximum one node less from Agave.

52 / 67

https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/disco/shred/fd_stake_ci.c#L248-L248
https://github.com/firedancer-io/solana/tree/f112068fc76fee5d14f5fa815c8b07e4f07fc566/gossip/src/cluster_info.rs#L2623-L2659
https://github.com/firedancer-io/firedancer/pull/2307

Security Audit – Firedancer v0.1

[ND-FD1-MD-05] Firedancer v0.1’s limit for number of shreds in a FEC-
set is lower than Agave

Severity Impact Affected Component Status

Medium Firedancer v0.1 has to use repair for some
blocks

Shred Acknowledged

The shreds sent over the network are forward-error-corrected. Agave usually produces 32:32
data:coding shred sets to send to other validators. This set might be larger in certain conditions,
especially at the end of slots. Firedancer correctly handles this, and can accept FEC-sets of up to 67:67.
Agave should not usually produce sets larger than this.

However, Agave accepts sets larger than this! As far as we can tell, the only limitation here is in the
sanitize functions of the respective shred parsers. There is a check for a max of 256 coding shreds in
shred_code.rs::sanitize() Where as data-shreds are limited to 32768 MAX_DATA_SHREDS_PER_SLOT

In addition, during erasure-decoding, the reed-solomon-erasure coder Agave uses has a check for

1 if data_shards + parity_shards > F::ORDER {
2 return Err(Error::TooManyShards);
3 }

Where F is GF2**8, so there is an implicit limit that #data + #codingmust be at most 256. How-
ever, this is only used when actually erasure recovering shred data. If all shreds are received (or if a
only-data-shred FEC is sent), this is never used. One block could consist of a single FEC-set, only limited
by the number of shreds a block can have (32768:0).

Firedancer will simply reject all shreds larger than 67:67 in fd_fec_resolver_add_shred.

In practice, while replay and repair are running in Agave, this isn’t a big issue. If the network builds
consensus on this block, enough nodes will have the shred to repair from. Agave repair is a totally
different ingress that uses only Agave code, so there is no limit to FEC set sizes there. In the past, there
were validators running exclusively on repair, so Firedancer v0.1 won’t fork, just be a bit behind while
recovery catches up.

This will have to be fixed once Firedancer no longer uses Agave for repair.

We have not verified the exact limits with Agave in practice, there might be checks in unexpected
places.

53 / 67

https://github.com/firedancer-io/solana/tree/f112068fc76fee5d14f5fa815c8b07e4f07fc566/ledger/src/shred/shred_code.rs#L192
https://github.com/firedancer-io/solana/tree/f112068fc76fee5d14f5fa815c8b07e4f07fc566/ledger/src/shred/shred_data.rs#L185
https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/disco/shred/fd_fec_resolver.c#L330-L331

Security Audit – Firedancer v0.1

[ND-FD1-LO-02] Firedancer does not check shred version

Severity Impact Affected Component Status

Low Not investigated Shred Fixed

Firedancer gets shred version from agave (fd_shred_version), but never actually checks that in the
shred-ingress. Blockstore insert does NOT catch that. It just checks shreds are consistent between
each other in a FEC set. Agave has should_discard_shred in the fetch stage.

We haven’t investigated impact here, but the check should be simple enough to add.

Fix

Firedancer fixes this in PR#2274.

54 / 67

https://github.com/firedancer-io/firedancer/pull/2274

Security Audit – Firedancer v0.1

[ND-FD1-LO-03] Firedancer does not check for consistency between
code and data shreds

Severity Impact Affected Component Status

Low Not investigated Shred Invalid

NOTE: This finding was found to not be accurate. Still including it, since the discussion might be
interesting.

Firedancer only checks for consistency between each data and code shred separately, not between
them. Shreds might, for example, have a different shred version or slot. Source.

We haven’t investigated whether this is actually reachable or filtered out by some previous checks, but
we recommend adding a check in any case to ensure there are no edge cases.

Agave re-runs the check on blockstore inserts, but this bug might be usable to cause slots that have to
rely on repair. The fix is straight-forward: Check that all fields shared across the first data and coding
shred are identical.

Discussion

This finding is invalid. Here is an annotated outline of the fields of each shred, and how they are
checked:

1 struct __attribute__((packed)) fd_shred {
2 fd_ed25519_sig_t signature;
3
4 uchar variant; // taken from base_data_shred for both coding+

data
5 ulong slot; // taken from base_data_shred for both coding+

data
6 uint idx; // "Index of this shred within the slot". used

for computing `in_type_idx`.
7 ushort version; // taken from base_data_shred for both coding+

data
8 uint fec_set_idx; // taken from base_data_shred for both coding+

data
9

10 union {
11 struct __attribute__((packed)) {
12 ushort parent_off; // taken from base_data_shred

55 / 67

https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/disco/shred/fd_fec_resolver.c#L544-L572

Security Audit – Firedancer v0.1

13 uchar flags; // can be arbitrary. 0b10xx_xxxx is invalid
value, but that is later caught by agave sanitize() on
blockstore insert. reference tick is only for some time-
estimation in agave, not critical.

14 ushort size; // implicitly checked during parsing in
fd_shred_parse

15 } data;
16
17 struct __attribute__((packed)) {
18 ushort data_cnt; // taken from base_parity_shred
19 ushort code_cnt; // taken from base_parity_shred
20 ushort idx; // must be equal to parity-shred-index
21 } code;
22 };
23 };

One thing of note, is that Firedancer is relying on some checks in the Agave sanitize functions to ensure
‘shred-acceptance-parity’

This checks that no shred can be last-in-slot, while NOT also being a data-complete shred (0
b10xx_xxxx), as well as limits on the maximum number of shreds. Firedancer doesn’t currently run
those checks explicitly, though they still happen on Agave blockstore-insert, and has to be kept in
mind when replacing Blockstore with its own tile.

56 / 67

https://github.com/anza-xyz/agave/blob/ff21dbeddef77973708ed34586eb9ca52e29dd45/ledger/src/shred/shred_data.rs#L174

Security Audit – Firedancer v0.1

[ND-FD1-MD-06] Firedancer does not handle legacy shreds correctly

Severity Impact Affected Component Status

Medium Not investigated Shred Fixed

As far as we can tell, there are no checks on what shreds are allowed. Firedancer parses all of them,
and they have to be one of the 4 Legacy/Merkle Data/Code types. But later, Firedancer simply assumes
to only be handling Merkle shreds: Source:

1 int is_data_shred = shred_type==FD_SHRED_TYPE_MERKLE_DATA;
2
3 if(!is_data_shred) { /* Roughly 50/50 branch */

This only checks if a shred is NOT a merkle data shred, and then uses the ‘code’ field only present on
code shreds. But Legacy Data shreds are also passed-through to the fec-resolver and then treated as
Merkle-Code shreds.

Also, there is no support for the newly introduced chained merkle shreds, which are behind an inactive
feature right now, though, on both test- and mainnet: PR#34916. So it might be prudent to whitelist
merkle-shreds explicitly.

Agave has also gone and done the same: PR#34328 The corresponding feature gate was activated in
Epoch 600 on Apr 9, 2024.

We haven’t investigated impact here in detail, but the fix should be easy enough. It seems likely that an
attacker can at least cause Firedancer to accept shreds that Agave would not.

Fix

Firedancer fixes this in PR#2274

57 / 67

https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/disco/shred/fd_fec_resolver.c#L327-L329
https://github.com/solana-labs/solana/pull/34916
https://github.com/solana-labs/solana/pull/34328
https://github.com/firedancer-io/firedancer/pull/2274

Security Audit – Firedancer v0.1

[ND-FD1-NI-01]QUIC Nitpicks

Severity Impact Affected Component Status

Nitpick N/A QUIC Acknowledged

A couple of quic findings batched, all nit/info severity.

QUIC Key-Logging discards 32 bytes of client/server secret

QUIC secrets are defined as

1 struct fd_quic_tls_secret {
2 uint suite_id;
3 uint enc_level;
4 uchar read_secret [64];
5 uchar write_secret[64];
6 uchar secret_len;
7 };

The logging in waltz/quic/fd_quic.c:2902 only prints the first 32 bytes (hex encoded 64 bytes)

Internally quic also only uses 32 byte secret length everywhere, so only the size is wrong, and should
be read from the struct as well (secret->secret_len):

1 /* 96+ 1 chars */ s = fd_cstr_append_char(s, ' ');
2 /* 97+64 chars */ s = fd_hex_encode(s, client_secret, 32UL);
3 /* 161 chars */ fd_cstr_fini(s);

The same pattern applies a number of other places that copy the secret around.

Wrong (to small) len size in FD_QUIC_MBR_TYPE_{TOKEN,PREFERRED_ADDRESS}

FD_QUIC_MBR_TYPE_{TOKEN,PREFERRED_ADDRESS} are defined as

1 #define FD_QUIC_MBR_TYPE_TOKEN(NAME,TYPE) \
2 uint NAME##_len; \
3 uchar NAME[1024]; \
4 uchar NAME##_present;
5 #define FD_QUIC_MBR_TYPE_PREFERRED_ADDRESS(NAME,TYPE) \
6 uint NAME##_len; \
7 uchar NAME[1024]; \
8 uchar NAME##_present;

58 / 67

Security Audit – Firedancer v0.1

During parsing with Macros, they are truncated to a uchar sz, which is limited to 255. While this doesn’t
have immediate impact, we recommend to use a larger field here, or explicitly reduce the maximum
name size.

1 #define FD_QUIC_PARSE_TP_TOKEN(NAME) \
2 do { \
3 if(FD_UNLIKELY(sz>sizeof(params->NAME))) return -1; \
4 fd_memcpy(params->NAME, buf, sz); \
5 params->NAME##_len = (uchar)sz; \
6 params->NAME##_present = 1; \
7 } while(0)
8
9 #define FD_QUIC_PARSE_TP_PREFERRED_ADDRESS(NAME) \

10 do { \
11 if(FD_UNLIKELY(sz>sizeof(params->NAME))) return -1; \
12 fd_memcpy(params->NAME, buf, sz); \
13 params->NAME##_len = (uchar)sz; \
14 params->NAME##_present = 1; \
15 } while(0)

FD_QUIC_PARSE_FAIL should be FD_QUIC_ENCODE_FAIL

Currently, when encoding max data frames, the return value is checked:

1 /* attempt to write into buffer */
2 frame_sz = fd_quic_encode_max_data_frame(payload_ptr,
3 (ulong)(

payload_end -
payload_ptr),

4 &frame.max_data)
;

5 if(FD_LIKELY(frame_sz != FD_QUIC_PARSE_FAIL)) {

The code should check for FD_QUIC_ENCODE_FAIL instead of FD_QUIC_PARSE_FAIL. Both defines
are set to be ~0, but this might change in the future:

1 #define FD_QUIC_PARSE_FAIL (~(ulong)0)
2 #define FD_QUIC_ENCODE_FAIL (~(ulong)0)

This pattern also occures multiple times in the remaining function

Inconsistency in NEW_TOKEN Frame

A lot of parsing code relies on the fact that varint’s in quic have a maximum value of 2^62 - 1, making
overflow-checks unnecessary for ulong’s.

59 / 67

Security Audit – Firedancer v0.1

Every Frame definition uses ulong field sizes to parse a quic varint, e.g. as seen in the CRYPTO
frame:

1 FD_TEMPL_DEF_STRUCT_BEGIN(crypto_frame)
2 FD_TEMPL_MBR_FRAME_TYPE(type, 0x06,0x06)
3 FD_TEMPL_MBR_ELEM_VARINT (offset, ulong)
4 FD_TEMPL_MBR_ELEM_VARINT (length, ulong)
5 FD_TEMPL_MBR_ELEM_VAR_RAW(crypto_data, 0,12000, length)
6 FD_TEMPL_DEF_STRUCT_END(crypto_frame)

varint guarantee that the result is < 2^62 - 1 . Thus, integer overflow checks can be omitted when
the FD quic components uses the parsed data structures of ulong (!) values. (0x3fffffffffffffff
)

In case of the NEW_TOKEN frame, and only in this frame, a uint (4 byte) is used instead:

1 FD_TEMPL_DEF_STRUCT_BEGIN(new_token_frame)
2 FD_TEMPL_MBR_FRAME_TYPE (type, 0x07,0x07)
3 FD_TEMPL_MBR_ELEM_VARINT (token_len, uint)
4 FD_TEMPL_MBR_ELEM_VAR_RAW(token, 0,8192, token_len)
5 FD_TEMPL_DEF_STRUCT_END(new_token_frame)

In the parsing code above, a varint value with the max size of 2^62 - 1 is cast to token_len = (
uint)varint, allowing to have a max value of 0xffffffff. Parsing with such a high value currently
fails in the next step when 0xffffffff > MAX_BITS for the actual token field (= 8192 BITS).

Still, e.g. if the parsing code is changed someday, large values of uint might cause overflow problems,
as they are assumed by the devs to never overflow.

We thus recommend to use ulong consistently, as some assumptions of the current codebase relay on
the fact, that sizes don’t have the uppermost two bits set (= no overflow when adding to sizes etc.)

60 / 67

Security Audit – Firedancer v0.1

[ND-FD1-LO-04] PoH trusts the microblock_trailer it got from pack too
much

Severity Impact Affected Component Status

Low Enables exploit from one Sandbox to another PoH Fixed

In the pack_poh link, microblocks are sent together with a fd_microblock_trailer_t:

1 struct fd_microblock_trailer {
2 /* The hash of the transactions in the microblock, ready to be
3 mixed into PoH. */
4 uchar hash[32UL];
5
6 /* Bank index to return the bank busy seq on to indicate that
7 we are done processing these accounts. */
8 ulong bank_idx;
9

10 /* Sequence number to return on the bank_busy fseq to indicate
11 that the accounts have been fully processed and can be
12 released to pack for reuse. */
13 ulong bank_busy_seq;
14 };
15 typedef struct fd_microblock_trailer fd_microblock_trailer_t;

This has 1.5 bugs. Firstly, the microblock trailer is not copied to PoH space, but simply referenced by
pointer. That would allow pack to race any checks that PoH does.

Second and more important: There are no checks on the bank_idx. It is used to index into the
bank_busy array, but can overflow to point pretty much anywhere.

This gives an attacker a powerful write-what-where primitive to escape from pack into the PoH/Agave
sandbox viafd_fseq_update, which essentially is just a memory write, to which you provide a pointer
and a value, both are taken from the microblock trailer.

1 fd_fseq_update(ctx->bank_busy[ctx->_microblock_trailer->bank_idx],
ctx->_microblock_trailer->bank_busy_seq);

Source: fd_poh.c

Since bank_busy is hard-limited to 64 entries, Firedancer should check incoming trailers against
this.

Practical exploitation of this issue is likely quite hard, and wasn’t further investigated.

61 / 67

https://github.com/firedancer-io/firedancer//blob/fdd89735be64a4d8e14e8db27b85630f52c473b1/src/app/fdctl/run/tiles/fd_poh.c#L1509-L1509

Security Audit – Firedancer v0.1

Fix

Firedancer fixes this in PR#2184. The microblock trailer is now copied, and it is verified that the bank
index has a sensible value.

62 / 67

https://github.com/firedancer-io/firedancer/pull/2184

Security Audit – Firedancer v0.1

[ND-FD1-LO-05] Bank pointers are unprotected

Severity Impact Affected Component Status

Low Potential for exploit-chaining across
sandboxes

Agave Acknowledged

Firedancer v0.1 currently passes around raw bank pointers to tiles running outside of the PoH/Labs
address space.

Specifically, when becoming leader, Agave replay constructs a new bank, and passes the pointer to PoH,
which in turn forwards it to Pack. Pack then forwards this pointer together with a packed microblock
to the bank tile, which then calls into Agave, where the Bank pointer is used.

Pack is a fully sandboxed standalone process and, ideally, shouldn’t be able to tamper with a pointer
from within the Agave process. Since Pack can provide both the bank pointer and a set of ‘arbitrary’
microblock contents, it seems reasonable to assume that an exploit chain from Pack to Agave is possible
but far from trivial.

We have yet to investigate how hard this is exactly; it likely needs an info leak.

A possible fix for this would be to only pass around a “bank-index”, and have a set of possible banks in
shared-memory within the Agave address space. That way, replay can let PoH know that a new bank
is available in slot X, and this slot number can be propagated through all chains, ultimately getting
verified if it’s still valid before use.

63 / 67

Security Audit – Firedancer v0.1

[ND-FD1-LO-06] Pack trusts verify tile for parsing transactions

Severity Impact Affected Component Status

Low Potential for exploit-chaining across
sandboxes

Pack Acknowledged

The Pack tile trusts sizes and counts from the transactions parsed in the verify tile. This makes it
possible, if quite hard, to chain exploits from the verify tile to the pack tile.

Some discussion on this already exists over at PR#1393 Move txn parsing into verify from QUIC.

We recommend to make this as robust as possible, and prevent this chain. The verify tile is only respon-
sible for verifying incoming transactions. A compromise here, even a compromise for all Firedancer
validators, would only lead to illegal blocks being produced, which other validators will not accept,
as the path to verify transactions in replay is different and does not go through the same verify tile.
Compromising just the Pack tile isn’t all that much more interesting, but it is a lot closer to replay.

Conveniently, Pack has control over the bank pointer used for replay. This is another interesting exploit
primitive that makes it, at the very least, feasible to break out of Pack into an Agave Bank. This, in
turn, is catastrophic, as all of Agave+PoH shares the same address space. (see Issue: Bank pointers are
unprotected)

Compromising replay on all nodes in the Network gives an attacker the keys to the castle, providing the
ability to do pretty much any otherwise illegal state changes, like minting SOL out of thin air. Different
tiles have different exploit severity levels, so we recommend making it hard to chain an exploit between
the different sandboxes.

A possible fix would be to move parsing from verify down to pack, where it ultimately has to happen.
Note, however, that a lack of parsing in verify could create issues with crafted signatures influencing
the dedup map.

64 / 67

https://github.com/firedancer-io/firedancer/issues/1393
https://github.com/neodyme-labs/firedancer-m1-audit/issues/17
https://github.com/neodyme-labs/firedancer-m1-audit/issues/17

Security Audit – Firedancer v0.1

[ND-FD1-IN-01] Agave joins shred_store workspace as RW, could
be RO

Severity Impact Affected Component Status

Info Weaker Sandbox Agave Sandbox Fixed

In clone_labs_memory_space_tiles, Firedancer sets up which workspaces the PoH/Agave mem-
ory space as access to.

The shred_store workspace is joined with write permissions, which isn’t required as the store tile
in the labs-address-space only consumes from the link, and the shred tile which publishes is it’s own
sandboxed process.

Something similar might apply to dedup_pack, though that’s technically required, as both the
dedup_pack and gossip_pack link operate on that workspace, and Agave has to publish to
gossip_pack. We are not sure what the performance/memory impact would be, but it might be
feasible to split up those two links into separate workspaces to prevent the Agave workspace from
meddling with the dedup_pack link. In practice, Agave is a lot more sensitive than dedup, so a split
here doesn’t provide much additional security.

Remediation

Firedancer fixed this in PR#2185 agave: reduce workspace permissions.

65 / 67

https://github.com/firedancer-io/firedancer/pull/2185

Security Audit – Firedancer v0.1

A | About Neodyme
Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully understand
every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competitions,
called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption, reverse
engineering complicated algorithms, and much more. Through the years, many of our team members
have won national and international hacking competitions, and keep ranking highly among some of the
hardest CTF events worldwide. In 2020, some of our members started experimenting with validators
and became active members in the early Solana community. With the prospect of an interesting
technical challenge and bug bounties, they quickly encouraged others from our CTF team to look for
security issues in Solana. The result was so successful that after reporting several bugs, in 2021, the
Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

66 / 67

Security Audit – Firedancer v0.1

Neodyme AG

Dirnismaning 55
Halle 13
85748 Garching
E-Mail: contact@neodyme.io

https://neodyme.io

67 / 67

https://neodyme.io

	Executive Summary
	Introduction
	Scope
	Firedancer v0.1 Design
	Detailed Firedancer Architecture

	Attack Surface Overview
	Recommendation for Agave Compatibility

	Sandbox Evaluation
	Tile Sandboxes
	Agave Sandbox
	Information Leak Requirements

	Exploit Investigation
	Possible Impacts
	Sandbox Secrets

	Exploit Paths
	Shared Memory Between Tiles
	TOCTOU Investigation
	Inter-Tile Trust-Based Exploit Chains

	Patches to Agave
	Interface Robustness
	Interactions During Leader Slots

	Tile Evaluation
	Sign Tile and Cryptography Evaluation
	Quic Tile
	Pack Tile
	Shred Tile

	Datastructures
	Findings
	[ND-FD1-MD-01] Hashmaps are vulnerable to HashDoS attacks
	[ND-FD1-HI-01] QUIC tile DoS with INITIAL and CONNECTION CLOSE frames
	[ND-FD1-MD-02] QUIC vulnerable to a low bandwith DoS
	[ND-FD1-MD-03] Quic implementation vulnerable to slowloris attacks
	[ND-FD1-LO-01] Risk of Sign-Tile Exhaustion
	[ND-FD1-HI-02] Stake weight sending has easy to reach DoS by creating more than 40200 validators
	[ND-FD1-MD-04] Potential panic in fd_stake_ci_dest_add_fini
	[ND-FD1-MD-05] Firedancer v0.1’s limit for number of shreds in a FEC-set is lower than Agave
	[ND-FD1-LO-02] Firedancer does not check shred version
	[ND-FD1-LO-03] Firedancer does not check for consistency between code and data shreds
	[ND-FD1-MD-06] Firedancer does not handle legacy shreds correctly
	[ND-FD1-NI-01] QUIC Nitpicks
	[ND-FD1-LO-04] PoH trusts the microblock_trailer it got from pack too much
	[ND-FD1-LO-05] Bank pointers are unprotected
	[ND-FD1-LO-06] Pack trusts verify tile for parsing transactions
	[ND-FD1-IN-01] Agave joins shred_store workspace as RW, could be RO

	About Neodyme

